一个跳popping的quant的博客

ML、DL学习者/量化金融学习者/poppin dancer

个人微信公众号:AIquantLab,关注回复得1000GB学习资料~~

最近刚刚创建了一个个人公众号,想记录下学习的过程,所以把之前整理的视频资料分享了出来,公众号也会经常推送 1、机器学习、深度学习等人工智能领域知识。 2、前沿人工智能量化理论以及实际应用成果介绍。 3、python编程小trick。 4、传统量化策略以及智能量化策略分析。 5、金融时间序...

2019-02-14 11:49:05

阅读数 663

评论数 0

我的收藏

机器学习方法 Kaggle-Titanic Xgboost方法整理 模型融合之Stacking Ensemble Learning 各种方法 XGBoost使用 BAT机器学习面试题 机器学习中的范数规则化 泛化、容量、过拟合和欠拟合 经验误差(empirical error)和泛...

2018-08-13 22:44:41

阅读数 825

评论数 0

超限学习机(ELM)、在线顺序超限学习机(OS-ELM)

概念 ELM是一种应用于训练SLFN的算法,传统的单隐层前馈神经网络(Single hidden Layer Feedforward Network, SLFN)由于其结构简单、训练速度快且具有较高的泛化能力等特点,已经在模式识别、信号处理、短期预测等领域有了很多应用成果。相比于传统的基于梯度下降...

2019-05-08 15:20:26

阅读数 44

评论数 0

平均值和方差的递推公式以及python实现

有时候在处理流式数据的时候,需要实时更新数据的统计值,如平均值和方差,如果通过传统求解方差或者平均值时,每到达一个新的数据就需要遍历来求解。在数据量比较少的时候,通过遍历和递推求解的时间消耗和空间消耗并不是很明显,但是在大数据或者流式数据的应用场景下,O(n)O(n)O(n)和O(1)O(1)O(...

2019-04-17 16:46:43

阅读数 54

评论数 0

联合熵(joined entropy)、条件熵(conditional entropy)、相对熵(relative entropy)、互信息(mutual information)以及相关关系整理

这部分内容算是对前面时间序列中近似熵、样本熵、模糊熵等熵的基础部分,毕竟前面部分只是对各种熵的求法步骤做了归纳,要理解其中的意义来得从最基础的部分进行分析。 Entropy (熵) 熵是衡量随机变量不确定性的指标。根据Shannon的定义,对于一个在概率空间 Ω\OmegaΩ 中,具有概率分布 p...

2019-04-12 14:02:43

阅读数 76

评论数 0

《Option Volatility & Pricing》阅读笔记之 Volatility(波动率)

Random Walks and Normal Distribution 一个期权交易者不仅仅需要对市场变动的方向敏感,同时还需要对市场变化的速度敏感。波动率(Volatility)就是作为一种衡量市场变化速度的指标。在相同时间的范围内,有的标的物的价格可以波动很大范围,有的几乎没有波动,那么它们...

2019-03-22 20:24:48

阅读数 206

评论数 0

《Option Volatility & Pricing》阅读笔记之 Theoretical Pricing Model(理论定价模型)

这节内容主要是关于理论定价模型。 1、what a option trader concerns about market? 在期货交易中,如果你对市场的方向足够敏感,那么就可以在它上涨前做多,在它下跌前做空;而在期权交易中,单单预测市场的方向是不够的,还需要感受市场变化的速度。 如果对同一个标的...

2019-03-20 21:24:55

阅读数 179

评论数 0

《Option Volatility & Pricing》阅读笔记之 Option Terminology (期权术语)

这节内容主要是整理一些合约的规则与期权的术语。 如果现在还看不太懂下面这张期权的各种数据,看完下面对各种术语的解释就可以看懂了。 1.Types of Options (期权的种类) 期权的种类有两种,一种是 call option (认购期权,也称看涨期权),另一种是 put opti...

2019-03-17 15:54:12

阅读数 64

评论数 1

《Option Volatility & Pricing》阅读笔记之 Financial Contracts(金融合约)

Financial Contracts(金融合约) 作者一开始是通过一个故事来一步步引入期权的这个概念的。觉得这个故事作为例子特别好,故事的背景是: Jerry生活在一个小城镇上,由于父母不在以及他的很多朋友为了寻求更好的发展都已经搬离这个城镇,所以Jerry也在打算离开这里。但是近期Jerr...

2019-03-15 16:20:43

阅读数 47

评论数 0

关于人工智能在量化领域应用的一些思考

无论是人工智能还是量化金融,接触的时间也不短了,一直想总结下自己对人工智能在量化领域的应用的一些思考。这篇博文就作为这样的一个阶段性的学习总结了。 下面提到的人工智能指的是机器学习、深度学习和一些统计学模型,只是作为人工智能领域下的几个分支。 虽然目前人工智能火的不行,图像识别、NLP、 H...

2019-03-12 14:40:13

阅读数 247

评论数 0

时间序列分析之增长熵(Increment Entropy)

增长熵(Increase Entropy,IncrEn) 概念 ApEn主要是通过计算时间序列中子序列出现的频率(frequency)来作为衡量相似性的指标,频率越高越相似,ApEn也就越低。它的缺陷主要是由于不同参数的组合会出现不一样的结果,缺少相对一致性(relative consiste...

2019-03-10 12:16:33

阅读数 137

评论数 2

时间序列分析之排列熵(Permutation Entropy)

排列熵(Permutation Entropy,PeEn) 概念 排列熵同样和前面提到的近似熵、样本熵以及模糊熵一样,都是用于衡量时间序列复杂程度而的指标。只不过,它在计算重构子序列之间的复杂程度时,引入了排列的思想。 排列熵求法 1、设有长度为NNN的时间序列u(1),u(2),u(3),......

2019-03-06 19:50:59

阅读数 1029

评论数 0

时间序列分析之熵(Entropy)

熵这个概念最早是用于热力学中,毕竟这个字是火字旁,用于衡量一个系统能量的不可用程度,熵越大,能量的不可用程度就越大;越小能量的不可用程度越低。它的物理意义是体系中混乱程度或者复杂程度的度量。 关于熵的应用也在不断拓展,从热力学到生物学、物理学,以及在时间序列分析上都有应用。 一、近似熵(App...

2019-03-02 12:31:25

阅读数 484

评论数 0

时间序列分析之经验模态分解(EMD)和集成经验模态分解(EEMD)

一、经验模态分解(Empirical Mode Decomposition, EMD) 目的 EMD是由 NE. Huang 等人提出的一种将信号分解成特征模态的方法。它的优点是不会运用任何已经定义好的函数作为基底,而是根据所分析的信号而自适应生成本征模态函数。可以用于分析非线性、非平稳的信号...

2019-02-28 22:02:12

阅读数 326

评论数 0

时间序列分析之误差修正模型(ECM)

误差修正模型(Error Correction Model, ECM) 协整(cointegration)反映的是序列中变量之间的长期均衡关系,用网上的一个例子来描述协整就是一个醉汉牵着一只狗,他们之间的距离虽然会时远时近,但是由于绳子的存在,当达到绳子的长度时,他们的距离又会拉近,这样他们之间就...

2019-02-25 18:15:37

阅读数 2264

评论数 0

T检验、卡方检验以及p-value

当我们将样本中得到的结果推论到总体时,如果样本恰好只是个别现象,或者样本数目过少时,就会出现误差。所以我们就可以提出一个假设 (Hypothesis) ,假设样本的结果可以推论到总体,而检验这个假设是否靠得住就可以通过统计学家们提出的检验方法来计算得出,这些检验方法就包括了 T检验、F检验、卡方检...

2019-02-23 20:06:25

阅读数 485

评论数 0

统计套利之配对交易策略实现(基于python)

关于做统计套利所需要的基本知识在前面也整理过了: 时间序列分析之ADF检验 时间序列分析之协整检验 时间序列分析之相关性 下面用python实现一个简单的配对交易策略: 目录 一、交易对象选取 相关性检验 ADF检验 协整检验 二、主体策略 投资组合的构建 设置开仓和止损的...

2019-02-22 19:01:37

阅读数 2159

评论数 4

时间序列分析之相关性

目录 方差 (Variance) 相关系数 (Correlation) 自相关/序列相关 (Autocorrelation or Serial Correlation) 两种时间序列的相关性 方差 (Variance) 设随机变量X的均值 E(X) = m,则描述 X 的取值和它的均值...

2019-02-20 17:27:27

阅读数 832

评论数 0

大四上学期总结

距离上次写 大三上学期总结 过去一年了,想想看能养成写博客的习惯还真的不错,至少可以与不同阶段的自己做一下对比,手动笔芯艾特csdn

2019-02-17 12:58:44

阅读数 758

评论数 3

时间序列分析之协整检验

协整关系 协整(Cointegration)理论是恩格尔(Engle)和格兰杰(Granger)在1978年提出的。平稳性是进行时间序列分析的一个很重要的前提,很多模型都是基于平稳下进行的,而现实中,很多时间序列都是非平稳的,所以协整是从分析时间序列的非平稳性入手的。 协整的内容是: 设序列...

2019-02-07 14:18:02

阅读数 4119

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭