pandas 中diff 一阶差分的理解

本文介绍了如何使用diff函数来计算DataFrame中数据的变化情况。通过示例展示了不同参数设置下diff函数的应用,如正向和负向移动以及不同周期的移动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下:

index value1
A 0
B 1
C 2
D 3

如果执行:

df.diff()

则会得到:

index value1
A NaN
B 1
C 1
D 1

怎么得到的呢,其实是经过了两个步骤,首先会执行:

df.shift()

然后再将该数据与原数据做差,即:

df.shift()-df

函数原型:

DataFrame.diff(periods=1, axis=0)

参数:

  • periods:移动的幅度,int类型,默认值为1。
  • axis:移动的方向,{0 or ‘index’, 1 or ‘columns’},如果为0或者’index’,则上下移动,如果为1或者’columns’,则左右移动。

返回值

  • diffed:DataFrame类型

例如:执行

df.diff(2)

得到:

index value1
A NaN
B NaN
C 2
D 2

执行

df.diff(-1)

得到:

index value1
A -1
B -1
C -1
D NaN
### 一阶差分的数学定义 在一维情况下,对于离散数据序列 \( f(x_0), f(x_1), \ldots, f(x_n) \),一阶前向差分为: \[ f'(x_i) = f(x_{i+1}) - f(x_i) \] 而一阶中心差分则表示为[^1]: \[ f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2} \] 这两种形式的一阶差分都用于近似连续函数的一阶导数,在数值分析中具有重要意义。 ### 应用场景 #### 图像处理领域 在图像边缘检测方面,一阶差分被广泛应用。由于图像本质上是由像素组成的二维矩阵,因此可以通过计算相邻像素之间的差异来突出显示边界区域。具体来说,当灰度变化剧烈时(即存在较大的梯度),往往意味着物体轮廓或其他显著特征的存在。 ```python import numpy as np from scipy import ndimage def sobel_edge_detection(image): # 定义Sobel算子核 sobel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) # 使用卷积操作实现一阶差分 edges_x = ndimage.convolve(image, sobel_x) return edges_x ``` 此代码片段展示了如何利用 Sobel 算子执行基于一阶差分的水平方向上的边缘检测。 #### 时间序列预测 除了静态图片之外,时间序列也是另一个典型的应用案例。通过对历史数据实施一阶差分可以消除趋势成分并使序列平稳化,从而简化后续建模过程中的参数估计工作量[^2]。 ```python import pandas as pd def first_difference(series): """ 对给定的时间序列应用一阶差分 """ return series.diff().dropna() data = pd.Series([1, 2, 4, 7, 11]) diff_data = first_difference(data) print(diff_data) ``` 上述 Python 脚本演示了一种简单的方式来进行时间序列的一阶差分转换。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值