方案一:Dask服务器端安装CH库驱动,使用pyodbc链接
如果您的 ClickHouse 数据库部署在服务器上,那么在连接它时需要指定服务器的 IP 地址和端口号。具体配置方法如下:
第一步
在所有 worker 和 scheduler 上安装 ClickHouse ODBC 驱动:
- ClickHouse ODBC 驱动程序的配置文件路径 /path/to/clickhouse-odbc.ini ,也可能在/etc下
Windows 系统中可以通过控制面板的 ODBC 数据源管理器添加 ODBC 数据源。 - 在 Dask 集群配置文件中指定 ODBC 数据源,在 Dask 集群的配置文件 dask.yaml 中,需要添加 ClickHouse 数据库连接的配置信息,并指定 ODBC 数据源的名称。
dask:
config:
dask.distributed:
worker:
extra_env:
ODBCINI: /path/to/clickhouse_odbc.ini # 配置 ClickHouse ODBC 驱动文件的路径
ODBCINSTINI: /path/to/odbcinst.ini # 配置 ODBC 驱动的配置文件路径
ODBC_DRIVER_NAME: ClickHouse # 指定使用的 ODBC 驱动名称
env:
DASK_DISTRIBUTED__WORKER__MEMORY__TARGET: 0.8
scheduler:
extra_env:
ODBCINI: /path/to/clickhouse_odbc.ini # 配置 ClickHouse ODBC 驱动文件的路径
ODBCINSTINI: /path/to/odbcinst.ini # 配置 ODBC 驱动的配置文件路径
ODBC_DRIVER_NAME: ClickHouse # 指定使用的 ODBC 驱动名称
第二步
在 Python 代码中使用 PyODBC 包连接 ClickHouse 数据库,指定服务器的 IP 地址、端口号、用户名和密码等连接信息
import pyodbc
# 连接 ClickHouse 数据库
conn = pyodbc.connect('DRIVER=ClickHouse;SERVER=clickhouse-server-ip;PORT=clickhouse-server-port;DATABASE=mydatabase;UID=username;PWD=password')
# 查询数据
cursor = conn.cursor()
cursor.execute('SELECT * FROM mytable')
result = cursor.fetchall()
print(result)
方案二:使用 clickhouse-sqlalchemy
安装 SQLAlchemy 和 clickhouse-sqlalchemy [client、scheduler、worker都要去安装]
在 Python 中使用 clickhouse-sqlalchemy 连接 ClickHouse 数据库,需要安装 SQLAlchemy 和 clickhouse-sqlalchemy 两个包。
可以使用以下命令来安装:
pip install sqlalchemy
pip install clickhouse-sqlalchemy
连接 ClickHouse 数据库
在 Python 中连接 ClickHouse 数据库,可以使用以下代码:
from sqlalchemy import create_engine
# 创建 ClickHouse 数据库引擎
engine = create_engine('clickhouse://<username>:<password>@<host>:<port>/<database>')
# 查询数据
result = engine.execute('SELECT * FROM mytable').fetchall()
print(result)
使用 Dask 连接 ClickHouse 数据库
在 Dask 中使用 clickhouse-sqlalchemy 连接 ClickHouse 数据库,可以使用以下代码:
import dask.dataframe as dd
from dask.distributed import Client
from sqlalchemy import create_engine
# 创建 Dask 客户端
client = Client()
# 在 Dask 中创建 ClickHouse 数据库引擎
engine = create_engine('clickhouse://<username>:<password>@<host>:<port>/<database>')
# 读取 ClickHouse 数据库中的数据
df = dd.read_sql_table('mytable', engine, index_col='id', npartitions=4)
# 进行计算和操作
result = df.groupby('column1').column2.sum().compute()
print(result)
我们首先创建一个 Dask 客户端,然后使用 create_engine() 函数指定连接到 ClickHouse 数据库的引擎。