服务器端Dask连接分布式列式存储库Clickhouse多种方案

 

方案一:Dask服务器端安装CH库驱动,使用pyodbc链接

如果您的 ClickHouse 数据库部署在服务器上,那么在连接它时需要指定服务器的 IP 地址和端口号。具体配置方法如下:

第一步

在所有 worker 和 scheduler 上安装 ClickHouse ODBC 驱动:

  1. ClickHouse ODBC 驱动程序的配置文件路径 /path/to/clickhouse-odbc.ini ,也可能在/etc下
    Windows 系统中可以通过控制面板的 ODBC 数据源管理器添加 ODBC 数据源。
  2. 在 Dask 集群配置文件中指定 ODBC 数据源,在 Dask 集群的配置文件 dask.yaml 中,需要添加 ClickHouse 数据库连接的配置信息,并指定 ODBC 数据源的名称。
dask:
  config:
    dask.distributed:
      worker:
        extra_env:
          ODBCINI: /path/to/clickhouse_odbc.ini # 配置 ClickHouse ODBC 驱动文件的路径
          ODBCINSTINI: /path/to/odbcinst.ini # 配置 ODBC 驱动的配置文件路径
          ODBC_DRIVER_NAME: ClickHouse # 指定使用的 ODBC 驱动名称
        env:
          DASK_DISTRIBUTED__WORKER__MEMORY__TARGET: 0.8
      scheduler:
        extra_env:
          ODBCINI: /path/to/clickhouse_odbc.ini # 配置 ClickHouse ODBC 驱动文件的路径
          ODBCINSTINI: /path/to/odbcinst.ini # 配置 ODBC 驱动的配置文件路径
          ODBC_DRIVER_NAME: ClickHouse # 指定使用的 ODBC 驱动名称

第二步

在 Python 代码中使用 PyODBC 包连接 ClickHouse 数据库,指定服务器的 IP 地址、端口号、用户名和密码等连接信息

import pyodbc

# 连接 ClickHouse 数据库
conn = pyodbc.connect('DRIVER=ClickHouse;SERVER=clickhouse-server-ip;PORT=clickhouse-server-port;DATABASE=mydatabase;UID=username;PWD=password')

# 查询数据
cursor = conn.cursor()
cursor.execute('SELECT * FROM mytable')
result = cursor.fetchall()

print(result)

 
 

方案二:使用 clickhouse-sqlalchemy

安装 SQLAlchemy 和 clickhouse-sqlalchemy [client、scheduler、worker都要去安装]
在 Python 中使用 clickhouse-sqlalchemy 连接 ClickHouse 数据库,需要安装 SQLAlchemy 和 clickhouse-sqlalchemy 两个包。
可以使用以下命令来安装:

pip install sqlalchemy
pip install clickhouse-sqlalchemy

连接 ClickHouse 数据库
在 Python 中连接 ClickHouse 数据库,可以使用以下代码:

from sqlalchemy import create_engine

# 创建 ClickHouse 数据库引擎
engine = create_engine('clickhouse://<username>:<password>@<host>:<port>/<database>')

# 查询数据
result = engine.execute('SELECT * FROM mytable').fetchall()

print(result)

使用 Dask 连接 ClickHouse 数据库
在 Dask 中使用 clickhouse-sqlalchemy 连接 ClickHouse 数据库,可以使用以下代码:

import dask.dataframe as dd
from dask.distributed import Client
from sqlalchemy import create_engine

# 创建 Dask 客户端
client = Client()

# 在 Dask 中创建 ClickHouse 数据库引擎
engine = create_engine('clickhouse://<username>:<password>@<host>:<port>/<database>')

# 读取 ClickHouse 数据库中的数据
df = dd.read_sql_table('mytable', engine, index_col='id', npartitions=4)

# 进行计算和操作
result = df.groupby('column1').column2.sum().compute()

print(result)

我们首先创建一个 Dask 客户端,然后使用 create_engine() 函数指定连接到 ClickHouse 数据库的引擎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值