一.多任务运行控制
1 . 等待子任务结束(join)
进程或着线程添加 join 方法之后,会等待子任务结束,如果没有结束则会阻塞,直到子任务结束,因此join一般都是放在程序的最后面,通过阻塞进行等待。(进程与线程都可使用)
import time
import multiprocessing
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
print(x+y)
time.sleep(5)
print('func-end', new_time())
if __name__ == '__main__':
print('main-start',new_time())
p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
p1.start()
time.sleep(5)
p1.join() # 等待子进程结束
print('main-end',new_time())
主进程的模拟耗时操作与子进程同时运行,但因子进程需要多运行一部 x + y ,以至于子进程结束时间要迟于主进程结束时间。
但因加入了 join 方法,主进程只会在子进程运行结束后才会结束。( main 是主进程,func 是子进程)
2.获取当前进程
在进程内容获取当前进程,方便查找问题(进程与线程都可使用)
import time
import multiprocessing
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
print(multiprocessing.current_process()) # 获取当前运行的进程对象
print(x+y)
time.sleep(5)
print('func-end', new_time())
if __name__ == '__main__':
print(multiprocessing.current_process()) # 获取当前运行的进程对象
print('main-start',new_time())
p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
p1.start()
time.sleep(5) # 模拟耗时操作,主进程的任务
p1.join() # 等待子进程结束,主要是通过阻塞的方式来等待
print('main-end',new_time())
MainProcess 表示主进程,Process - 1 表示子进程。
3.任务名字
import time
import multiprocessing
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
print(x+y)
time.sleep(5)
print('func-end', new_time())
if __name__ == '__main__':
print('main-start',new_time())
p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
p1.name = '进程一号' # 获取进程名
print(p1.name) # 修改属性名,改变进程名
p1.start()
time.sleep(5) # 模拟耗时操作,主进程的任务
p1.join() # 等待子进程结束,主要是通过阻塞的方式来等待
print('main-end',new_time())
4.终止进程
在正常情况下,主进程的结束,并不会影响子进程,但是也可以在主进程结束之后,强制终止子进程。(注意线程不能终止,只能等待结束)
import time
import multiprocessing
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
# print(multiprocessing.current_process()) # 获取当前运行的进程对象
print(x+y)
time.sleep(5)
print('func-end', new_time())
if __name__ == '__main__':
# print(multiprocessing.current_process()) # 获取当前运行的进程对象
print('main-start',new_time())
p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
# p1.name = '进程一号' # 获取进程名
# print(p1.name) # 修改属性名,改变进程名
p1.start()
time.sleep(5) # 模拟耗时操作,主进程的任务
# p1.join() # 等待子进程结束,主要是通过阻塞的方式来等待
p1.terminate()
print('main-end',new_time())
二.多任务标识
1.进程(PID)
在Linux中,只要进程一创建,系统就会分配一个pid,在程序运行过程中,pid都不会改变。可以通过pid查看进程对资源的使用情况,也可以通过PID来控制进程的运行。( pid 一般是在 start()方法后执行的)
import time
import multiprocessing
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
# print(multiprocessing.current_process()) # 获取当前运行的进程对象
print(x+y)
time.sleep(500)
print('func-end', new_time())
if __name__ == '__main__':
# print(multiprocessing.current_process()) # 获取当前运行的进程对象
print('main-start',new_time())
p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
print('beform start',p1.pid)
# p1.name = '进程一号' # 获取进程名
# print(p1.name) # 修改属性名,改变进程名
p1.start()
print('after start',p1.pid)
time.sleep(5) # 模拟耗时操作,主进程的任务
# p1.join() # 等待子进程结束,主要是通过阻塞的方式来等待
# p1.terminate()
print('main-end',new_time())
可以利用程序的 pid 对程序进行操作,例如使用远程连接工具杀死进程
2.线程(ident)
线程还是在一个进程当中,因此不会有PID。线程由python解释器调度,为了调度方便,会有ident,类似于操作系统中的pid。( ident 一般也是在 start()方法后执行的)
import time
import threading
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
print(x+y)
time.sleep(5)
print('func-end', new_time())
print('main-start',new_time())
t1 = threading.Thread(target=func,args=(1,2))
print('befor start',t1.ident)
t1.start()
print('after start',t1.ident)
time.sleep(5)
print('main-end',new_time())
3.生命周期(is_alive())
进程的生命周期开始于 start,实例化之后,进程并没有启动,只有启动之后才开始生命周期。
import time
import multiprocessing
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
# print(multiprocessing.current_process()) # 获取当前运行的进程对象
print(x+y)
time.sleep(3)
print('func-end', new_time())
if __name__ == '__main__':
# print(multiprocessing.current_process()) # 获取当前运行的进程对象
# print('main-start',new_time())
p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
# print('befor start',p1.pid)
# p1.name = '进程一号' # 获取进程名
# print(p1.name) # 修改属性名,改变进程名
print('befor start',p1.is_alive())
p1.start()
print('after start', p1.is_alive())
# print('after start',p1.pid)
time.sleep(3) # 模拟耗时操作,主进程的任务
p1.join() # 等待子进程结束,主要是通过阻塞的方式来等待
print('join start', p1.is_alive())
# p1.terminate()
print('main-end',new_time())
三.守护模式
开启守护模式之后,主进程结束,子进程会自动结束,但前提是每个子进程都需要开启守护模式。只需在实例化子进程时将 daemon 设置为 True。
import time
import multiprocessing
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
def func(x,y):
print('func-start', new_time())
print(x+y)
time.sleep(5)
print('func-end', new_time())
if __name__ == '__main__':
print('main-start',new_time())
p1 = multiprocessing.Process(target = func,args=(1,2),daemon=True) # 实例化一个新的子进程
p1.start()
time.sleep(5)
print('main-end',new_time())
四.面对对象编程
利用多进程实现 redis 数据库的并发
import time
import redis
import multiprocessing
"""
自定义一个进程类
通过class关键字定一个类(普通的类)
如果你想要有进程对象的功能以及属性,做继承
继承于进程类(自定义继承类)
"""
def new_time():
"""
返回asc格式的当前时间
:return:
"""
return time.asctime(time.localtime(time.time()))
class RedisProcess(multiprocessing.Process):
def __init__(self,db,key,values):
super().__init__()
self.connect = redis.StrictRedis(db=db) # 连接redis
self.key = key
self.values = values
def set(self):
"""
插入数据 设置 key和 value
:return:
"""
self.connect.set(self.key,self.values)
def get(self):
return self.connect.get(self.key)
def run(self):
"""
start 方法会自动调用run方法
start 后,就插入数据,并返回插入的值
重写run
:return:
"""
print('inner-start',new_time())
print(multiprocessing.current_process)
self.set()
print(self.get().decode('utf-8'))
time.sleep(1) # 模拟耗时操作
print('inner-end',new_time())
print('outer-start',new_time())
r1 = RedisProcess(1,'yige','18') # 实例化自定义进程类(创建进程,连接redis)
r2 = RedisProcess(2,'liangge','18')
r1.start() # start会自动调用run
r2.start()
print('outer-end',new_time())
附(今日份学习):
多任务控制:
守护模式:
利用多进程操作 redis 数据库实现并发: