网络编程 04:进程与线程的补充

一.多任务运行控制

1 . 等待子任务结束(join)

进程或着线程添加 join 方法之后,会等待子任务结束,如果没有结束则会阻塞,直到子任务结束,因此join一般都是放在程序的最后面,通过阻塞进行等待。(进程与线程都可使用)

import time
import multiprocessing

def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    print(x+y)
    time.sleep(5)
    print('func-end', new_time())

if __name__ == '__main__':
    print('main-start',new_time())

    p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
    p1.start()

    time.sleep(5)

    p1.join()  # 等待子进程结束
    
print('main-end',new_time())

在这里插入图片描述

主进程的模拟耗时操作与子进程同时运行,但因子进程需要多运行一部 x + y ,以至于子进程结束时间要迟于主进程结束时间。
在这里插入图片描述
但因加入了 join 方法,主进程只会在子进程运行结束后才会结束。( main 是主进程,func 是子进程)
在这里插入图片描述
2.获取当前进程

在进程内容获取当前进程,方便查找问题(进程与线程都可使用)

import time
import multiprocessing

def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    print(multiprocessing.current_process()) # 获取当前运行的进程对象
    print(x+y)
    time.sleep(5)
    print('func-end', new_time())

if __name__ == '__main__':
    print(multiprocessing.current_process()) # 获取当前运行的进程对象

    print('main-start',new_time())

    p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
    p1.start()

    time.sleep(5) # 模拟耗时操作,主进程的任务

    p1.join()  # 等待子进程结束,主要是通过阻塞的方式来等待

print('main-end',new_time())

在这里插入图片描述

在这里插入图片描述
MainProcess 表示主进程,Process - 1 表示子进程。

3.任务名字

import time
import multiprocessing

def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    print(x+y)
    time.sleep(5)
    print('func-end', new_time())

if __name__ == '__main__':
	print('main-start',new_time())
	
	p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
    p1.name = '进程一号' # 获取进程名
    print(p1.name) # 修改属性名,改变进程名
    p1.start()

    time.sleep(5) # 模拟耗时操作,主进程的任务

    p1.join()  # 等待子进程结束,主要是通过阻塞的方式来等待

print('main-end',new_time())

在这里插入图片描述

在这里插入图片描述
4.终止进程

在正常情况下,主进程的结束,并不会影响子进程,但是也可以在主进程结束之后,强制终止子进程。(注意线程不能终止,只能等待结束)

import time
import multiprocessing

def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    # print(multiprocessing.current_process()) # 获取当前运行的进程对象
    print(x+y)
    time.sleep(5)
    print('func-end', new_time())

if __name__ == '__main__':
    # print(multiprocessing.current_process()) # 获取当前运行的进程对象

    print('main-start',new_time())

    p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
    # p1.name = '进程一号' # 获取进程名
    # print(p1.name) # 修改属性名,改变进程名
    p1.start()

    time.sleep(5) # 模拟耗时操作,主进程的任务

    # p1.join()  # 等待子进程结束,主要是通过阻塞的方式来等待

    p1.terminate()

print('main-end',new_time())

在这里插入图片描述

在这里插入图片描述

二.多任务标识

1.进程(PID)

在Linux中,只要进程一创建,系统就会分配一个pid,在程序运行过程中,pid都不会改变。可以通过pid查看进程对资源的使用情况,也可以通过PID来控制进程的运行。( pid 一般是在 start()方法后执行的)

import time
import multiprocessing

def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    # print(multiprocessing.current_process()) # 获取当前运行的进程对象
    print(x+y)
    time.sleep(500)
    print('func-end', new_time())

if __name__ == '__main__':
    # print(multiprocessing.current_process()) # 获取当前运行的进程对象

    print('main-start',new_time())

    p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
    print('beform start',p1.pid)
    # p1.name = '进程一号' # 获取进程名
    # print(p1.name) # 修改属性名,改变进程名

    p1.start()
    print('after start',p1.pid)

    time.sleep(5) # 模拟耗时操作,主进程的任务

    # p1.join()  # 等待子进程结束,主要是通过阻塞的方式来等待

    # p1.terminate()

print('main-end',new_time())

可以利用程序的 pid 对程序进行操作,例如使用远程连接工具杀死进程
在这里插入图片描述在这里插入图片描述
2.线程(ident)

线程还是在一个进程当中,因此不会有PID。线程由python解释器调度,为了调度方便,会有ident,类似于操作系统中的pid。( ident 一般也是在 start()方法后执行的)

import time
import threading


def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    print(x+y)
    time.sleep(5)
    print('func-end', new_time())

print('main-start',new_time())

t1 = threading.Thread(target=func,args=(1,2))
print('befor start',t1.ident)
t1.start()
print('after start',t1.ident)

time.sleep(5)
print('main-end',new_time())

在这里插入图片描述

在这里插入图片描述
3.生命周期(is_alive())

进程的生命周期开始于 start,实例化之后,进程并没有启动,只有启动之后才开始生命周期。

import time
import multiprocessing

def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    # print(multiprocessing.current_process()) # 获取当前运行的进程对象
    print(x+y)
    time.sleep(3)
    print('func-end', new_time())

if __name__ == '__main__':
    # print(multiprocessing.current_process()) # 获取当前运行的进程对象

    # print('main-start',new_time())

    p1 = multiprocessing.Process(target = func,args=(1,2)) # 实例化一个新的子进程
    # print('befor start',p1.pid)
    # p1.name = '进程一号' # 获取进程名
    # print(p1.name) # 修改属性名,改变进程名

    print('befor start',p1.is_alive())
    p1.start()
    print('after start', p1.is_alive())
    # print('after start',p1.pid)

    time.sleep(3) # 模拟耗时操作,主进程的任务

    p1.join()  # 等待子进程结束,主要是通过阻塞的方式来等待
    print('join start', p1.is_alive())

    # p1.terminate()

print('main-end',new_time())

在这里插入图片描述
在这里插入图片描述

三.守护模式

开启守护模式之后,主进程结束,子进程会自动结束,但前提是每个子进程都需要开启守护模式。只需在实例化子进程时将 daemon 设置为 True。

在这里插入图片描述

import time
import multiprocessing


def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

def func(x,y):
    print('func-start', new_time())
    print(x+y)
    time.sleep(5)
    print('func-end', new_time())

if __name__ == '__main__':
    print('main-start',new_time())


    p1 = multiprocessing.Process(target = func,args=(1,2),daemon=True) # 实例化一个新的子进程
    p1.start()

    time.sleep(5)
    print('main-end',new_time())

在这里插入图片描述

四.面对对象编程

利用多进程实现 redis 数据库的并发

import time
import redis
import multiprocessing

"""
自定义一个进程类
    通过class关键字定一个类(普通的类)
    如果你想要有进程对象的功能以及属性,做继承
    
    继承于进程类(自定义继承类)

"""

def new_time():
    """
    返回asc格式的当前时间
    :return:
    """
    return time.asctime(time.localtime(time.time()))

class RedisProcess(multiprocessing.Process):
    def __init__(self,db,key,values):
        super().__init__()
        self.connect = redis.StrictRedis(db=db) # 连接redis
        self.key = key
        self.values = values

    def set(self):
        """
        插入数据 设置 key和 value
        :return:
        """
        self.connect.set(self.key,self.values)

    def get(self):
        return self.connect.get(self.key)

    def run(self):
        """
        start 方法会自动调用run方法
        start 后,就插入数据,并返回插入的值
        重写run
        :return:
        """
        print('inner-start',new_time())
        print(multiprocessing.current_process)
        self.set()

        print(self.get().decode('utf-8'))
        time.sleep(1) #  模拟耗时操作
        print('inner-end',new_time())

print('outer-start',new_time())
r1 = RedisProcess(1,'yige','18') # 实例化自定义进程类(创建进程,连接redis)
r2 = RedisProcess(2,'liangge','18')

r1.start() # start会自动调用run
r2.start()
print('outer-end',new_time())

附(今日份学习):

多任务控制:
在这里插入图片描述
在这里插入图片描述
守护模式:
在这里插入图片描述
利用多进程操作 redis 数据库实现并发:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南风和云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值