题目
正解
显然先要将“恰好”转成“至少”,算出“至少”之后直接反演回去。
比赛的时候建出了个和题解不一样的模型,搞了个二维生成函数。
最后想出的方法需要依赖多点插值,普通的多点插值常数大又不好写,所以没有去写。
后来经过DYP提醒,直接插单位根不就好了吗!!!
于是时间复杂度应该是
O
(
n
lg
n
)
O(n\lg n)
O(nlgn)
再详细点讲题解做法。
考虑某个点
i
i
i被
i
−
m
i-m
i−m和
i
+
m
i+m
i+m争抢,画出一个二分图,
i
i
i在右边,
i
−
m
i-m
i−m和
i
+
m
i+m
i+m在左边。通过争抢关系建出图之后,可以发现形成了若干条链。
于是模型就转化成了,在一条长度为
L
L
L的链上,选择任意条点不相交的边。
假如选
i
i
i条边,方案数显然为
C
n
−
i
i
C_{n-i}^i
Cn−ii
于是每条链都可以写出个生成函数,将所有链卷积起来即可。
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 262144
#define ll long long
#define mo 998244353
ll qpow(ll x,int y=mo-2){
ll r=1;
for (;y;y>>=1,x=x*x%mo)
if (y&1)
r=r*x%mo;
return r;
}
int nN;
int re[N];
void dft(int A[],int flag){
for (int i=0;i<nN;++i)
if (i<re[i])
swap(A[i],A[re[i]]);
for (int i=1;i<nN;i<<=1){
ll wn=qpow(3,flag==1?(mo-1)/(2*i):mo-1-(mo-1)/(2*i));
for (int j=0;j<nN;j+=i<<1){
ll wnk=1;
for (int k=j;k<j+i;++k,wnk=wnk*wn%mo){
ll x=A[k],y=wnk*A[k+i]%mo;
A[k]=(x+y)%mo;
A[k+i]=(x-y+mo)%mo;
}
}
}
if (flag==-1){
ll invn=qpow(nN);
for (int i=0;i<nN;++i)
A[i]=A[i]*invn%mo;
}
}
int n,m;
ll fac[N],ifac[N];
ll C(int m,int n){return fac[m]*ifac[n]%mo*ifac[m-n]%mo;}
int f0[N],f1[N],f[N];
void getf(int n,int f[]){
for (int i=0;i<=n-i;++i)
f[i]=C(n-i,i);
}
int a[N],b[N],g[N];
int main(){
// freopen("in.txt","r",stdin);
freopen("perm.in","r",stdin);
freopen("perm.out","w",stdout);
scanf("%d%d",&n,&m);
int bit=0;
for (nN=1;nN<=2*n;nN<<=1,++bit);
re[0]=0;
for (int i=1;i<nN;++i)
re[i]=re[i>>1]>>1|(i&1)<<bit-1;
fac[0]=1;
for (int i=1;i<=n;++i)
fac[i]=fac[i-1]*i%mo;
ifac[n]=qpow(fac[n]);
for (int i=n-1;i>=0;--i)
ifac[i]=ifac[i+1]*(i+1)%mo;
getf(n/m,f0),getf(n/m+1,f1);
dft(f0,1),dft(f1,1);
for (int i=0;i<nN;++i)
f[i]=qpow(f0[i],(m-n%m)*2)*qpow(f1[i],(n%m)*2)%mo;
dft(f,-1);
for (int i=0;i<=n;++i)
f[i]=f[i]*fac[n-i]%mo;
for (int i=0;i<=n;++i){
a[i]=(ll)f[i]*fac[i]%mo;
b[i]=(ll)ifac[n-i]*(n-i&1?mo-1:1)%mo;
}
dft(a,1),dft(b,1);
for (int i=0;i<nN;++i)
g[i]=(ll)a[i]*b[i]%mo;
dft(g,-1);
for (int i=0;i<=n;++i)
printf("%lld\n",(ll)g[i+n]*ifac[i]%mo);
return 0;
}