NOIP2018提高组初赛选讲

本文回顾了NOIP2018提高组初赛中的几道难题,涉及线段期望长度的赛场做法和证明,以及抽奖问题的解决策略。文章通过归纳法解释了线段长度的期望值,并展示了位运算题目的解答,指出位运算中的异或在解题中的关键作用。
摘要由CSDN通过智能技术生成

说实话,这次的初赛比上一次的要简单。
不过还有些变态的题目。


  1. 在一条长度为1 的线段上随机取两个点,则以这两个点为端点的线段的期望
    长度是( )。
    A. 1 / 2
    B. 1 / 3
    C. 2 / 3
    D. 3 / 5

赛场做法

这题,一眼看下去,我就有点懵了。
后来,又想想有关期望的性质,然后……
画出一条线段,平均分成几份,将所有情况求出来,然后算出期望值。
算了两次,第一次分4份,第二次分6分。
结果都是 1 3 \frac{1}{3} 31

证明

我在网上翻到一篇有关这个的证明的博客,结果,那博客秀了强大的微积分……
后来,同学告诉我一个比较好理解的证法:
考虑归纳证明
假设现在有一条线段,长度为 l l l
利用分治的思想,在中间取个中点,设为 M M M。它将线段等分成两段。
设最终得到的线段的端点分别为 X X X Y Y Y
根据它们的位置,大体上有两种情况:

  1. X X X Y Y Y M M M异侧,则 X Y ‾ = X M ‾ + Y M ‾ \overline{XY}=\overline{XM}+\overline{YM} XY=XM+YM。显然,在期望情况下,两者皆为 x 4 \frac{x}{4} 4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值