说实话,这次的初赛比上一次的要简单。
不过还有些变态的题目。
- 在一条长度为1 的线段上随机取两个点,则以这两个点为端点的线段的期望
长度是( )。
A. 1 / 2
B. 1 / 3
C. 2 / 3
D. 3 / 5
赛场做法
这题,一眼看下去,我就有点懵了。
后来,又想想有关期望的性质,然后……
画出一条线段,平均分成几份,将所有情况求出来,然后算出期望值。
算了两次,第一次分4份,第二次分6分。
结果都是 1 3 \frac{1}{3} 31
证明
我在网上翻到一篇有关这个的证明的博客,结果,那博客秀了强大的微积分……
后来,同学告诉我一个比较好理解的证法:
考虑归纳证明
假设现在有一条线段,长度为 l l l。
利用分治的思想,在中间取个中点,设为 M M M。它将线段等分成两段。
设最终得到的线段的端点分别为 X X X, Y Y Y。
根据它们的位置,大体上有两种情况:
- X X X和 Y Y Y在 M M M异侧,则 X Y ‾ = X M ‾ + Y M ‾ \overline{XY}=\overline{XM}+\overline{YM} XY=XM+YM。显然,在期望情况下,两者皆为 x 4 \frac{x}{4} 4