题目
题目大意
有一个
01
01
01序列。给你一堆区间,每个区间中有且仅有一个
1
1
1点。
问最多的
1
1
1点个数。
思考历程
感觉这题特别经典,似乎在哪里见过,又好像没有见过。
一开始朝贪心方面想……想不出来……
后来想DP,还是想不出来……
直到WHH大爷跑过来兴奋地说:不就是个差分约束吗!
于是我心态崩了,去搜题解……
然而搜到的全是DP……
理解了一下DP的方法,虽然理解,但是极度不熟练……
可是这题对代码能力的考验又很强……我本想自己打出极其恶心的方法,但后来还是仔细看了看题解(还有)标程。
几乎是对着标打出来了……
心态崩了……
正解
先说DP。
设
f
i
f_i
fi表示选
i
i
i的最多的
1
1
1点数目。
方程为
f
i
=
max
f
j
+
1
f_i=\max f_j +1
fi=maxfj+1
现在问题是
j
j
j的范围怎么求。
这就很考验人的分析能力了——从两个方面考虑:
- 唯一性:所有包括 i i i的区间内都不能再选别的。这样可以求出右边界 R i R_i Ri,为包含 i i i的区间的最小左边界 − 1 -1 −1。
- 必要性:所有不包括 i i i的区间( i i i之前的)中都必须要有一个选。这样可以求出右边界 L i L_i Li,为不包含 i i i的区间的最大左边界
这样,求出
L
i
L_i
Li和
R
i
R_i
Ri,就可以转移了。
如果不刻意追求代码的完美,其实这个时候用线段树来辅助转移就好了,简单粗暴(如果是比赛,我肯定就这么打了)。
但是实际上可以优化。
首先可以证明出一个结论:
L
L
L和
R
R
R都是递增的。
如果
L
i
−
1
>
L
i
L_{i-1}>L_i
Li−1>Li,由于包含了
i
i
i的区间也会包含
i
−
1
i-1
i−1(除非区间左边界为
i
i
i,但显然这种情况下
L
i
−
1
≤
L
i
L{i-1}\leq L_i
Li−1≤Li),
L
i
−
1
L_{i-1}
Li−1为包含
i
−
1
i-1
i−1区间的最小左边界
−
1
-1
−1,所以
L
i
−
1
L_{i-1}
Li−1可以被更新,所以不成立。
如果
R
i
−
1
>
R
i
R_{i-1}>R_i
Ri−1>Ri,由于不包含
i
−
1
i-1
i−1的区间也不包含
i
i
i,
R
i
R_i
Ri为不包含
i
i
i区间的最大右边界,所以
R
i
R_i
Ri可以被更新,所以不成立。
既然都是递增的,那就可以很愉快地单调队列DP了……
有了各种单调的性质,代码也可以简单很多,也不需要打线段树或堆了……
然而……如果是在比赛,想这些的时间还不如用来打线段树呢……
还有一种方法是差分约束。
假如我们做一遍前缀和,对于区间
[
l
,
r
]
[l,r]
[l,r],就会有
s
l
+
1
=
s
r
s_l+1=s_r
sl+1=sr,相当于
s
l
+
1
≥
s
r
s_l+1\geq s_r
sl+1≥sr且
s
r
−
1
≥
s
l
s_r-1\geq s_l
sr−1≥sl。还有,将每个左右端点排个序记为
x
i
x_i
xi,那么还有
x
i
−
1
≤
x
i
x_{i-1}\leq x_i
xi−1≤xi
差分约束即可……当然我没有打过,所以纯属瞎哔哔……
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
int n,m;
struct Section{
int l,r;
} s[N];
inline bool cmps(const Section &a,const Section &b){
return a.l<b.l || a.l==b.l && a.r<b.r;
}
int L[N],R[N];
int q[N],head,tail;
int f[N];
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n+1;++i)
R[i]=i-1;
for (int i=1;i<=m;++i){
scanf("%d%d",&s[i].l,&s[i].r);
L[s[i].r+1]=max(L[s[i].r+1],s[i].l);
R[s[i].r]=min(R[s[i].r],s[i].l-1);
}
for (int i=n;i>=1;--i)
R[i]=min(R[i],R[i+1]);
for (int i=2;i<=n+1;++i)
L[i]=max(L[i],L[i-1]);
memset(f,127,sizeof f);
f[0]=0;
for (int i=1,j=0;i<=n+1;++i){
for (;j<=R[i];++j){
if (f[j]==0x7f7f7f7f)
continue;
while (head<=tail && f[q[tail]]<f[j])
tail--;
q[++tail]=j;
}
while (head<=tail && q[head]<L[i])
head++;
if (head<=tail)
f[i]=f[q[head]]+1;
}
if (f[n+1]==0x7f7f7f7f)
printf("-1\n");
else
printf("%d\n",f[n+1]-1);
return 0;
}
总结
真是一道单调队列的好题。
当然,如果是比赛,我肯定会选择打线段树的。