JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

JDK从8升级到11导致HBase性能下降20%,分析发现JDK 11的G1 GC在对象复制、并发标记和总体GC次数上表现较差。使用JFR和火焰图进行诊断,发现G1RemSet::scan_rem_set可能是性能下降的原因。问题追溯到JDK 9的PLAB大小计算错误,修复后性能恢复正常。解决方案包括调整YoungPLABSize和OldPLABSize参数或等待JDK 17修复。
摘要由CSDN通过智能技术生成

JDK 8中 GC 日志片段:

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

我们对整个日志做了统计,有以下发现:

并发标记时机不同,混合回收的时机也不同;

单次 GC 中对象复制的耗时不同,JDK 11 明显更长;

总体 GC 次数 JDK 11 得更多,包括了并发标记的停顿次数;

总体 GC 的耗时 JDK 11 更多。

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

针对 Young GC 的性能劣化,我们重点关注测试了和 Young GC 相关的参数,例如:调整

UseDynamicNumberOfGCThreads、G1UseAdaptiveIHOP 、GCTimeRatio 均没有效果。

下面我们尝试使用不同的工具来进一步定位到底哪里出了问题。

3.3JFR分析-确认日志分析结果

=================

毕昇 JDK 11和毕昇 JDK 8 都引入了 JFR,JFR 作为 JVM 中问题定位的新贵,我们也在该案例进行了尝试,关于JFR的原理和使用,参考本系列的技术文章:Java Flight Recorder - 事件机制详解。

3.3.1JDK 11总体信息

===============

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

JDK 8 中通过 JFR 收集信息。

3.3.2JDK 8总体信息

==============

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

JFR 的结论和我们前面分析的结论一致,JDK 11 中中断比例明显高于 JDK 8。

3.3.3JDK 11中垃圾回收发生的情况

=====================

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

3.3.4JDK 8中垃圾回收发生的情况

====================

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

从图中可以看到在 JDK 11 中应用消耗内存的速度更快(曲线速率更为陡峭),根据垃圾回收的原理,内存的消耗和分配相关。

3.3.5JDK 11中VM操作

================

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

3.3.6JDK 8中VM操作

===============

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

通过 JFR 整体的分析,得到的结论和我们前面的一致,确定了 Young GC 可能存在问题,但是没有更多的信息。

3.4火焰图-发现热点

===========

为了进一步的追踪 Young GC 里面到底发生了什么导致对象赋值更为耗时,我们使用Async-perf 进行了热点采集。关于火焰图的使用参考本系列的技术文章:使用 perf 解决 JDK8 小版本升级后性能下降的问题

3.4.1JDK 11的火焰图

===============

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

3.4.2JDK 11 GC部分火焰图

===================

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

3.4.3JDK 8的火焰图

==============

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

3.4.4JDK 8 GC部分火焰图

==================

JDK从8升级到11,使用 G1 GC,HBase性能下降20%。JDK 到底干了什么

通过分析火焰图,并比较 JDK 8 和 JDK 11 的差异,可以得到:

在 JDK 11 中,耗时主要在:

1)G1ParEvacuateFollowersClosure::do_void()

2)G1RemSet::scan_rem_set

在 JDK 8 中,耗时主要在:

1)G1ParEvacuateFollowersClosure::do_void()

下一步,我们对 JDK 11 里面新出现的 scan_rem_set() 进行更进一步分析,发现该函数仅仅和引用集相关,通过修改 RSet 相关参数(修改 G1ConcRefinementGreenZone ),将 RSet 的处理尽可能地从Young GC的操作中移除。火焰图中参数不再成为热点,但是 JDK 11 仍然性能下降。

比较 JDK 8 和 JDK 11 中

G1ParEvacuateFollowersClosure::do_void() 中的不同,除了数组处理外其他的基本没有变化,我们将 JDK 11 此处的代码修改和 JDK 8 完全一样,但是性能仍然下降。

结论:虽然

G1ParEvacuateFollowersClosure::do_void() 是性能下降的触发点,但是此处并不是问题的根因,应该是其他的原因造成了该函数调用次数增加或者耗时增加。

3.5逐个版本验证-最终确定问题

================

我们分析了所有可能的情况,仍然无法快速找到问题的根源,只能使用最笨的办法,逐个版本来验证从哪个版本开始性能下降。

在大量的验证中,对于 JDK 9、JDK 10,以及小版本等都重新做了构建(关于 JDK 的构建可以参考官网),我们发现 JDK 9-B74 和 JDK 9-B73 有一个明显的区别。为此我们分析了 JDK 9-B73 输入的代码。发现该代码和 PLAB 的设置相关,为此梳理了所有 PLAB 相关的变动:

B66 版本为了解决 PLAB size 获取不对的问题(根据 GC 线程数量动态调整,但是开启

UseDynamicNumberOfGCThreads 后该值有问题,默认是关闭)修复了 bug。具体见 jira:Determining the desired PLAB size adjusts to the the number of threads at the wrong place

B74 发现有问题(desired_plab_sz 可能会有相除截断问题和没有对齐的问题),重新修改,具体见 8079555: REDO - Determining the desired PLAB size adjusts to the the number of threads at the wrong place

B115 中发现 B74 的修改,动态调整 PLAB 大小后,会导致很多情况 PLAB 过小(大概就是不走 PLAB,走了直接分配),频繁的话会导致性能大幅下降,又做了修复 Net PLAB size is clipped to max PLAB size as a whole, not on a per thread basis

重新修改了代码,打印 PLAB 的大小。对比后发现 desired_plab_sz 大小,在性能正常的版本中该值为 1024 或者 4096(分别是 YoungPLAB 和 OLDPLAB),在性能下降的版本中该值为 258。由此确认 desired_plab_sz 不正确的计算导致了性能下降。

3.6PLAB 为什么会引起性能下降?

===================

PLAB 是 GC 工作线程在并行复制内存时使用的缓存,用于减少多个并行线程在内存分配时的锁竞争。PLAB 的大小直接影响 GC 工作线程的效率。

在 GC 引入动态线程调整的功能时,将原来 PLABSize 的大小作为多个线程的总体 PLAB 的大小,将 PLAB 重新计算,如下面代码片段:

其中 desired_plab_sz 主要来自 YoungPLABSize 和 OldPLABSIze 的设置。所以这样的代码修改改变了 YoungPLABSize、OldPLABSize 参数的语义。

另外,在本例中,通过参数显式地禁止了 ResizePLAB 是触发该问题的必要条件,当打开 ResizePLAB 后,PLAB 会根据 GC 工作线程晋升对象的大小和速率来逐步调整 PLAB 的大小。

注意,众多资料说明:禁止 ResziePLAB 是为了防止 GC 工作线程的同步,这个说法是不正确的,PLAB 的调整耗时非常的小。PLAB 是 JVM 根据 GC 工作线程使用内存的情况,根据数学模型来调整大小,由于模型的误差,可能导致 PLAB 的大小调整不一定有人工调参效果好。如果你没有对 YoungPLABSize、OldPLABSize 进行调优,并不建议禁止 ResizePLAB。在 HBase 测试中,当打开 ResizePLAB 后 JDK 8 和 JDK 11 性能基本相同,也从侧面说明了该参数的使用情况。

3.7解决方法&修复方法

============

由于该问题是 JDK 9 引入,在 JDK 9, JDK 10, JDK 11, JDK 12, JDK 13, JDK 14, JDK 15, JDK 16 都会存在性能下降的问题。

我们对该问题进行了修正,并提交到社区,具体见Jira:

https://bugs.openjdk.java.net/browse/JDK-8257145;代码见:https://github.com/openjdk/jdk/pull/1474;该问题在JDK 17中被修复。

同时该问题在毕昇 JDK 所有版本中第一时间得到解决。

当然对于短时间内无法切换 JDK 的同学,遇到这个问题,该如何解决?难道要等到 JDK 17?一个临时的方法是显式地设置 YoungPLABSize 和 OldPLABSize 的值。YoungPLABSize 设置为 YoungPLABSize* ParallelGCThreads,其中 ParallelGCThreads 为 GC 并行线程数。例如 YoungPLABSize 原来为 1024,ParallelGCThreads 为 8,在 JDK 9~16,将 YoungPLABSize 设置为 8192 即可。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

总结

互联网大厂比较喜欢的人才特点:对技术有热情,强硬的技术基础实力;主动,善于团队协作,善于总结思考。无论是哪家公司,都很重视高并发高可用技术,重视基础,所以千万别小看任何知识。面试是一个双向选择的过程,不要抱着畏惧的心态去面试,不利于自己的发挥。同时看中的应该不止薪资,还要看你是不是真的喜欢这家公司,是不是能真的得到锻炼。其实我写了这么多,只是我自己的总结,并不一定适用于所有人,相信经过一些面试,大家都会有这些感触。

**另外本人还整理收藏了2021年多家公司面试知识点以及各种技术点整理 **

下面有部分截图希望能对大家有所帮助。

在这里插入图片描述
《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门即可获取!
选择的过程,不要抱着畏惧的心态去面试,不利于自己的发挥。同时看中的应该不止薪资,还要看你是不是真的喜欢这家公司,是不是能真的得到锻炼。其实我写了这么多,只是我自己的总结,并不一定适用于所有人,相信经过一些面试,大家都会有这些感触。

**另外本人还整理收藏了2021年多家公司面试知识点以及各种技术点整理 **

下面有部分截图希望能对大家有所帮助。

[外链图片转存中…(img-q2DH36VA-1712163926510)]
《一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值