【面试题031】连续子数组的最大和

【面试题031】连续子数组的最大和
题目:
    输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。
    求所有子数组的和的最大值。要求时间复杂度为O(n)。
 
思路一:
    枚举出数组的所有子数组并求出他们的和,最快也需要O(n^2)的时间,
 
 
思路二:
    举例分析数组的规律,如果加上一个负数,那个先前的累加和势必会减少,把先前的累加和记下来,因为这个累加和是可能的最大值,
    然后接着加上这个负数,举行累加,如果那一步出现累加和大于先前记录下来的累加和,更新最大值,最后的那个最大值就是答案。
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 
#include <iostream>

using  namespace std;

bool g_InvalidInput =  false;
int FindGreatestSumOfSubArray( int *pData,  int nLength)
{
     if ((pData ==  NULL) || (nLength <=  0))
    {
        g_InvalidInput =  true;
         return  0;
    }
    g_InvalidInput =  false;

     int nCurSum =  0;
     int nGreatestSum = 0x80000000;
     for ( int i =  0; i < nLength; ++i)
    {
         if (nCurSum <=  0)
        {
            nCurSum = pData[i];
        }
         else
        {
            nCurSum += pData[i];
        }
         if (nCurSum > nGreatestSum)
        {
            nGreatestSum = nCurSum;
        }
    }
     return nGreatestSum;
}

int main()
{
     int num[] = { 1, - 2310, - 472, - 5};
     int length =  sizeof(num) /  sizeof(num[ 0]);
    cout << FindGreatestSumOfSubArray(num, length) << endl;
     return  0;
}
思路三:
    应用动态规划,
    如果f(i)表示以第i个数字结尾的子数组的最大和,0<=i<n。
    如果i=0或者f(i-1)<=0,那么f(i) = pDate[i];
    如果i!=0并且f(i-1)>0,那么f(i) = f(i-1) + pDate[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

转载于:https://www.cnblogs.com/codemylife/p/3738176.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值