研究目的
本研究旨在开发一种基于游戏的端到端学习和测试框架,用于学习人类在高速公路上的驾驶技能,以提高自动驾驶汽车的性能。研究团队利用流行的游戏《侠盗猎车手V》(GTA V)来收集高速公路驾驶数据,并训练一个端到端的神经网络模型来预测车辆的转向和油门值。
创新性
- 提出了一种新颖的游戏化框架,用于端到端学习自动驾驶汽车的高速公路驾驶。
- 利用GTA V游戏中的数据来模拟人类驾驶行为,这是一种成本效益高且相对安全的方法。
- 通过虚拟控制器将预测的控制值发送回游戏,实现了一个闭环控制系统。
方法
- 数据收集:使用GTA V游戏收集驾驶数据,包括屏幕截图和用户控制输入。
- 神经网络训练:采用端到端学习方法训练两个神经网络(Nvidia的端到端网络架构和VGG-19架构)。
- 转移学习:使用预训练的VGG-19模型,冻结卷积层的权重,仅训练全连接层以预测转向和油门值。
- 数据增强:对收集的图像进行预处理和增强,如裁剪、翻转和调整亮度。
技术路线
- 数据收集:通过游戏屏幕截图和用户控制输入收集数据。
- 训练:使用收集的数据训练神经网络模型。
- 推理:将训练好的模型应用于游戏环境中,以预测车辆的控制动作。
研究结果
- VGG-19模型:在训练中表现更好,