AI绘画Stable Diffusion基础教程!

Ai绘图真的太火了,挡都挡不住。本着“不断好奇,不停学习”的理念,我打算介绍下Stable Diffusion,有兴趣的小伙伴可以一起学习。

目前市面上比较权威,并能用于工作中的 AI 绘画软件其实就两款。一个叫 Midjourney(简称 MJ),另一个叫 Stable-Diffusion(简称 SD)。MJ 需要付费使用,而 SD 开源免费,我们可以通过一些操作进行离线免费使用,效果也不错并且可玩性更高一些,因此我的选择是Stable Diffusion。

另外使用SD对系统的硬件也有一定的要求:

1、内存至少16G,越大越好。

2、显卡最好是N卡,显存同样越大越好:

至少 4G,勉强能出图。

6G 稍微好一点,可能部分功能无法使用。

8G 除了大模型训练不行,其他功能都可以用。

12G 及以上则无任何限制。

3、A卡用户应该也能用,这个需要自行测试,但是出图可能会很慢。

安装方法

目前大家普遍采用的 Stable Diffusion Web UI 是发布于开源程序分享网站 Github 的 Python 项目,和平常软件安装方法有所不同,不是下载安装即可用的软件,需要准备执行环境、编译源码,针对不同操作系统(操作系统依赖)、不同电脑(硬件依赖)还有做些手工调整,这需要使用者拥有一定的程序开发经验。

但是不用担心,现在可以直接使用大佬们做的一键启动程序包,比如国内@秋葉 aaaki 大佬开发的整合包,极大的降低了安装门槛(强烈推荐!)

大家可以自行去B站关注一波下载安装即可,不想自行去查找的也可文末扫码获取~

文生图的界面概述

现在我们看到的SD界面就是刚入手最常见的界面了-文生图,顾名思义就是文字生成图片。

由于参数比较多,全部介绍完篇幅可能会很长,所以我们这里先简单介绍几个最容易影响绘画的板块。

页面的左上方我们前面已经介绍过了是选择主模型的地方,旁边是加载VAE的地方,至于VAE是什么我们以后再说,再接下来的Clip 跳过层我们暂时用不到,可以不管:

往下走是横向的功能模块包括文生图、图生图等,同样其他的功能我们以后再说。

下面两个大的框就是我们的提示词框了,分别是正向提词框和反向提词框,简单理解就是你想要什么和你不想要什么:

提词框内的内容需要输入英文,它本身支持自然语言的,但还是建议用逗号分隔的一个个的关键词来写。

例如一只狗站在草地上,我们可以写成:A dog standing on the grass:

但是建议写成1dog,stand,grass,主要是方便我们后期加入或修改提示词或者调整权重。

右侧的生成按钮就不用说了,下面的第一个小箭头鼠标停止在上面就会有功能提示。

可以将例如你在C站上复制的生成信息直接填写到对应的栏位包括采样等,如果当前你的提词框为空则填入上一次的内容。

这个我们后面再说,旁边的垃圾桶按钮就是清空这些信息:

有时候我们会有一些常用的提词,可以按箭头处的保存将它保存为模板方便再次使用,另外两个分别是选择模板和填写模板:

另外秋叶的这个整合包是自动帮我们添加了一个通用起手式模板的,正向词是杰作、高质量,反向词翻译一下大概是这些:

由于我们用的是中文版的界面,所以红色方框的内容大家基本看都能看明白,这里只说简单说几个点:

采样迭代步数越高图像生成时间越长越贴近你的提词描述,但是过高反而会出错,通常20-30得手动尝试。

采样方法也就是采样器的算法这个也需要手动尝试,不同的采样方式效果也会有差异,比较常用的是DPM++。

宽度和高度也就是分辨率的选择。大多数模型使用512*512的图片训练的,推荐大家生成512*768。

提示词相关性CFG数值越高越接近你的提词信息,但是数值过高也会出错,同样需要手动尝试。

随机种子顾名思义根据你的提词随机生成一张图:

随机种子这里多说一句,例如你画出的图大体感觉你觉得不错想要保留这个大效果,可以点击旁边的绿色按钮,随机种子就会固定到数值:

这个时候你再去添加提词等,它就会尽量的在你原有的图片感觉上去生成新的图像,注意分辨率如果改变的话,同样画面也会改变:

右边的文件夹按钮可以打开我们画图的保存位置:

今天先简单介绍这么多,Stable Diffusion还有很多功能,大家也可以自己多多尝试,最后放两张我生成的美女图片吧~

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### Stable Diffusion AI 绘画 关键词术语 #### 安装与入门 对于希望进入AI绘画领域的新手而言,获取合适的资源至关重要。Stable Diffusion提供了安装包以及一系列的学习材料,包括但不限于PDF文档和视频教程,旨在帮助用户从零基础开始全面掌握这一技术[^1]。 #### 提示词优化 为了更好地控制由Stable Diffusion生成的艺术作品的效果,使用者可以通过精确设置提示词来影响最终成果的质量。例如,在提示词后面加上`[0-1数值]`可以调节该词语在整个描述中的权重;比如,“FOREST, LOTS OF TREES AND STONES,[FLOWERS: 0.7]”。这种做法允许艺术家更加细致地定义他们期望的画面特征[^2]。 #### 正负向提示词的应用 当涉及到具体场景或风格的选择时,合理运用正向(`prompt`)和反向(`negative prompt`)提示词显得尤为重要。如果目标是避免某些不理想的输出结果,则可以在负面列表里添加相应的关键词。举例来说,要防止模型误解“cowboy shot”而产生穿着牛仔服饰的角色形象,可在负面提示中加入像“full body”或者“closeup”的选项,从而引导算法避开不必要的细节[^3]。 #### 实际应用案例分析 在实际应用场景方面,《AI 绘画 | Stable Diffusion 电商模特》一文中提到的技术可用于创建虚拟试衣间体验。通过对原始图像进行处理并提取服装轮廓作为蒙版,再利用此蒙版将新设计的衣服贴合到人体模型上,进而创造出逼真的展示效果。这种方法不仅提高了工作效率,也为消费者带来了更为直观的商品预览方式[^4]。 ```python # 示例代码用于说明如何加载稳定扩散库(假设存在这样的Python接口) from stable_diffusion import load_model, generate_image_with_prompts model = load_model('path_to_pretrained_weights') image = generate_image_with_prompts( positive_prompt="A beautiful forest with lots of trees and stones", negative_prompt="full body, closeup" ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值