《用comfyUI挑战全网AI图片产品实践案例》之comfyUI抠图工作流,用免费打败收费,实现素材自由

近段时间AI非常的火。目前有很多软件已经拥抱了AI,加入了AI的一些功能。像[AI绘画]的功能,基本上是每个大厂的软件产品都会配备。但是呢,这些功能都是要付费的。而且是按月收费或者是按年收费。整体算下来十分的不划算。所以我尝试用stable
diffusion comyfUI 挑战全网AI图片产品的功能,关键是能免费使用。而这一次我们从抠图功能开始。
在这里插入图片描述

我们看一下市面上AI图片产品关于抠图的功能是怎么样的?下面是360智图的抠图功能。(其它平台的也大同小异,唯一有区别的可能就是价格了),它对于构图分了几个分类。AI抠图,人像抠图,商品抠图,点选抠图。

在这里插入图片描述

我大致判断它的功能的一个实现逻辑。是加入了一些视觉识别的功能。将图片中人物物体识别出来。然后再进行抠图。

那我们如果也加入视觉识别的话,工作流的慢,其实也没有必要,目前在comfyUI中90%的图都是通过开源的模型自动识别去背景的,也就能达到AI自动识别主体去背景,背景复杂的除外。

那么现在开始我们开始搭建工作流。那么现在开始我们搭建工作流。

首先呢,我们要加载一张图像。那么我们肯定要对这张图进行预处理。因为你可能加载了这张图,有的是十几m,有的是二三十m,还有的甚至50多m这么大。但我们处理的话不需要这么大。

在这里插入图片描述

所以我这里加载了一张图像之后,我加入了图像按系数缩放的节点。

像我们目前的话,移除背景或者是抠图的方式有几种,我在这里我都加入了抠图的几种方式,为什么加入呢?因为不同模型它对不同图片的效果都有点差异,没有好坏之分。就是有的好,有的不好,我们就选择这几种方式抠图出来效果满意的去使用就可以了。下图是工作流全貌。

在这里插入图片描述

一、通过移出背景节点实现抠图

下面是移除背景节点,我们拉出移除背景V2节点连接起来运行。(文末会放上节点连接)

参数用默认的就可以了。

在这里插入图片描述

二、AI自动抠图

拉出bria rmbg节点,直接执行即可抠图,不用调整参数。一般建议开启使用这个节点。

在这里插入图片描述

三、AI自动抠图

这种方式是人像使用,我们的加载的这张图像下半身刚好被裙子遮住,节点识别不出下半身,所以我们加载的图像最好能肉眼判断出全身,或身体部分。不然模型识别不出。

在这里插入图片描述

我们换一张

在这里插入图片描述

在这里插入图片描述

四、语义分割抠图

这个功能,需要我们写提示词,将你需要的元素描述进去进行分割,这里我加入了翻译节点,可中文输入,如下图,输入“人物”。

在这里插入图片描述

我们再测试下多元素的

在这里插入图片描述

以上这张图我们打比方说要抠出番茄和刀,我们就在提示词中输入番茄,刀

在这里插入图片描述

然后执行,就能抠出我们需要的元素。

在这里插入图片描述

五、升级版的自动抠图

这种方法是第二种方法的升级版本。加入了参数的调整,使用默认的即可。

在这里插入图片描述

以上就是五种方式的抠图,建议用第二种,但执行时最好所有开启,挑选自动抠图效果最好的来使用。

在这里插入图片描述

最后,我们这套工作流还提供了批量AI自动抠图的功能。

这里接入了自动抠图最优的两种方式,二选一,然后批量抠图。

在这里插入图片描述

我们closerAI出品的comfyUI抠图工作流中的批量抠图的方法如下:

1)路径填要批量处理的图片的文件夹,复制进去即可。

2)按系数缩放的开启与忽略的说明。工作流中加入图像缩放,要处理的图片分辨率很大时候开启,当然,你的显存很大可以处理就不用。

3)输入后的图像保存在comfyUI的output文件夹中。参考路径示例:

***\comfyUI\ConfyUI-aki\ComfyUI-aki-v1\ComfyUI-aki-v1\output

秋叶版的在主页“输出图片”文件夹中。

在这里插入图片描述

在这里插入图片描述

以上就是通过搭建抠图工作流,实现免费无限次抠图的方法。这些方法各有利弊,但效果跟付费产品差不多,甚至有时候比付费的还好。

资料软件免费放送

次日同一发放请耐心等待

写在最后

常用工作流已经给各位小伙伴打包好了,可以按需自取,无偿分享。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除

<think>好的,我现在需要回答用户关于PyTorch是否支持同时安装CPUGPU版本的问题。首先,我应该回顾一下PyTorch的安装机制。根据用户提供的引用资料,安装GPU版本的PyTorch通常需要特定的CUDA版本,并且用户可能需要通过不同的渠道获取对应的whl文件,比如从官网或镜像源下载[^2][^3][^5]。 接下来,我需要理解CPUGPU版本的区别。CPU版本是运行在处理器上的,而GPU版本需要NVIDIA的CUDA支持,利用显卡加速计算。两者在安装包上有不同的依赖项库文件,例如GPU版本会包含CUDA相关的库,而CPU版本则没有这些。 然后,我考虑是否可以在同一个环境中同时安装两个版本。根据经验,Python的包管理通常不允许同一个包的不同版本共存,因为包名称相同(如torch)会导致冲突。用户提供的引用中提到,如果强行安装不同版本的torch,可能会覆盖现有安装,导致不可预期的问题[^4][^5]。例如,如果先安装CPU版本,再安装GPU版本,后者会覆盖前者,反之亦然。 此外,用户可能需要同时使用两种环境的情况,比如在没有GPU的机器上运行CPU代码,而在有GPU的机器上运行加速代码。这时,使用虚拟环境(如conda或venv)分别创建独立的环境可能更合适。每个环境可以安装对应的PyTorch版本,避免冲突[^1][^3]。 还有一个考虑点是PyTorch的设计是否支持同时加载两个版本的库。通常,在运行时,PyTorch会检测可用的CUDA设备,并自动使用GPU版本。如果安装了GPU版本,即使代码中没有显式调用CUDA函数,PyTorch也会优先使用GPU资源。因此,同时安装两个版本不仅技术上不可行,也没有实际必要,因为GPU版本已经包含CPU功能。 最后,我需要总结这些信息,给出清晰的回答,并建议用户使用虚拟环境来管理不同版本的PyTorch,确保项目的兼容性稳定性。</think>PyTorch无法在同一个Python环境中同时安装CPUGPU版本。以下是具体分析及解决方案: ### 一、版本冲突机制 PyTorch的CPUGPU版本通过包名`torch`进行统一管理。安装时会根据后缀(如`cuXXX`表示CUDA版本)决定具体类型: - CPU版本:例如`torch-1.10.0-cp37-cp37m-win_amd64.whl` - GPU版本:例如`torch-1.10.0+cu113-cp37-cp37m-win_amd64.whl` 由于包名相同,后安装的版本会直接覆盖前一个版本[^4]。例如: ```bash # 先安装CPU版本 pip install torch==1.10.0 # 再安装GPU版本会导致覆盖 pip install torch==1.10.0+cu113 ``` ### 二、推荐解决方案 使用虚拟环境隔离不同需求: 1. **Conda环境管理**(推荐): ```bash # 创建GPU环境 conda create -n pytorch_gpu python=3.8 conda activate pytorch_gpu pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu113 # 创建CPU环境 conda create -n pytorch_cpu python=3.8 conda activate pytorch_cpu pip install torch torchvision ``` 通过`conda activate`切换环境即可[^3] 2. **Docker容器方案**: ```dockerfile # GPU容器 FROM pytorch/pytorch:1.10.0-cuda11.3-cudnn8-runtime # CPU容器 FROM pytorch/pytorch:1.10.0-cpu ``` ### 三、版本兼容性验证 安装后可通过以下代码检测当前环境版本: ```python import torch print(torch.__version__) # 输出如1.10.0+cpu或1.10.0+cu113 print(torch.cuda.is_available()) # GPU版本返回True ``` ### 四、特殊需求处理 若需在GPU版本中使用CPU模式,可直接通过代码指定设备: ```python device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3,3).to(device) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值