最新的学习笔记—《信息安全数学基础》

《信息安全数学基础》最新学习笔记

这里是关于《信息安全数学基础》书的个人笔记和总结,包括将一些概念(整除、同余、群、环、域、多项式等代数学基础)重点记录下来,这样容易快速记忆一些重点,建立信息安全需要掌握的数学基础。然而,这里没有相应的证明,需要详细的证明可以翻书查阅。若有错误的地方,欢迎指正,本人也同步在学习,将不断完善。(本人耗时一整天码字不易,希望对你有所帮助,仅供参考)

参考书籍《信息安全数学基础教程》(第2版),许春香 周俊辉等人编著。

附:也可直接下载PDF学习,可能里面对应的标注和内容更直观、清晰和完整。

一、整除与同余

定义1.1:假设 a 、 b a、b ab 是任意两个整数,其中 b b b 非零,若存在一个整数 q q q,使得
a = q b a=qb a=qb
称为 b b b能整除 a a a,或 a a a能被 b b b整除,记为 b ∣ a b|a ba,且 b b b a a a的因子, a a a b b b的倍数。

  • c > 0 c>0 c>0是两个不全为零的整数 a 、 b a、b ab的公因子,若 a 、 b a、b ab的任何公因子都整除c,则称为 a 、 b a、b ab最大公因子。记为 c = ( a , b ) c=(a, b) c=(a,b),或者 c = g c d ( a , b ) c=gcd(a, b) c=gcd(a,b)。假设 a 、 b a、b ab是两个非零的整数,则存在两个整数 u 、 v u、v uv使得 ( a , b ) = u a + v b (a, b)=ua+vb (a,b)=ua+vb
  • m > 0 m>0 m>0是两个整数 a 、 b a、b ab的公倍数,若 m m m整除 a 、 b a、b ab的任何公倍数,则 m m m称为 a 、 b a、b ab最小公倍数,记为 m = [ a , b ] m=[a, b] m=[a,b],或者 m = l c m ( a , b ) m=lcm(a, b) m=lcm(a,b)。有 [ a , b ] = ∣ a b ∣ ( a , b ) [a, b]=\frac {|ab|}{(a, b)} [a,b]=(a,b)ab,若 ( a , b ) = 1 (a, b)=1 (a,b)=1,则 [ a , b ] = ∣ a b ∣ [a, b]=|ab| [a,b]=ab

元素 a 、 b a、b ab互素的充要条件是,存在 u 、 v u、v uv使 u a + v b = 1 ua+vb=1 ua+vb=1,则由 ( a , b ) ∣ ( u a + v b ) (a, b)|(ua+vb) (a,b)(ua+vb),得 ( a , b ) ∣ 1 (a, b)|1 (a,b)∣1,所以 ( a , b ) = 1 (a, b)=1 (a,b)=1

  • 对于正整数 n n n和整数 a a a a − 1 m o d n a^{-1} mod n a1modn存在的充分必要条件 ( a , n ) = 1 (a, n)=1 (a,n)=1

如: a − 1 ( m o d n ) ⇒ a^{-1} \pmod n\Rightarrow a1(modn)存在整数 b b b 使得 a b ( m o d n ) = 1 ab \pmod n=1 ab(modn)=1

  • 例1 7 − 1 ( m o d 13 ) = ? 7^{-1}\pmod {13}=? 71(mod13)=解:因为 7 ∗ 2 ( m o d 13 ) = 1 7*2 \pmod {13} =1 72(mod13)=1,所以 7 − 1 ( m o d 13 ) = 2 7^{-1}\pmod {13} = 2 71(mod13)=2

定义1.2:设 x ∈ R x \in R xR ≤ x \leq x x的最大整数称为 x x x整数部分,记为 ⌊ x ⌋ \lfloor x\rfloor x。其中 ⌊ x ⌋ ≤ x ≤ ⌊ x ⌋ + 1 \lfloor x\rfloor\leq x\leq \lfloor x\rfloor+1 xxx+1

定义1.3:给定称为的正整数 m m m,若 m m m除整数 a 、 b a、b ab得相同的余数,即存在整数 q 1 q_{1} q1 q 2 q_{2} q2使得
a = q 1 m + r , b = q 2 m + r a=q_{1}m+r,b=q_{2}m+r a=q1m+rb=q2m+r
则称 a a a b b b关于模 m m m同余,记为
a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)
a a a b b b关于模 m m m同余的充分必要条件为: m ∣ ( a − b ) m|(a-b) m(ab),即 a = b + m t a=b+mt a=b+mt t t t是整数。

  • 第一章小结:(1) 重点记住”整除“和”被整除“的关系,通常为小的数整除大的数大的数小的数整除;(2) 注意 g c d = ( a , b ) gcd=(a, b) gcd=(a,b)表示最大公因子(greatest common divisor, gcd), l c m = [ a , b ] lcm=[a, b] lcm=[a,b]表示最小公倍数(least common multiple, lcm);(3)需要注意定义1.2中是 ⌊ x ⌋ \lfloor x\rfloor x不是 [ x ] [x] [x]

二、群

2.1 群

定义2.1:设 S S S是一个非空集合,如果在 S S S上定义了一个代数运算,称为乘法 ·,记 a ⋅ b a·b ab。对于乘法,根据习惯可省略乘号写成 a b ab ab ,且满足下列条件,则 ( S , ⋅ ) (S, ·) (S,⋅) 为一个半群

  • S S S关于乘法 ·封闭的,即对于 S S S中任意元素 a 、 b a、b ab,有 a ⋅ b a·b ab 属于 S S S
  • S S S对于乘法 ·结合律成立,即对于 S S S中任意元素 a 、 b 、 c a 、 b、c abc ,有 a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a·(b·c)=(a·b)·c a(bc)=(ab)c

则用”乘法“定义的群称为乘法半群;用”加法“定义的群称为加法半群

  • 半群必须满足封闭性结合律
  • 另外还要满足左单位元 e ( e ⋅ a = a ) e(e·a=a) e(ea=a)左逆元 b ( b ⋅ a = e ) b(b·a=e) b(ba=e)
  • 若群中的运算满足交换律,则这个群称为交换群阿贝尔(Abel)群
  • 若群 G G G中元素的个数是无限多个,称为 G G G是无限群,若有限个,称为有限群 G G G中元素的个数称为群的记为 ∣ G ∣ |G| G

2.2 子群

定义2.2:一个群 G G G的一个子集 H H H如果对于 G G G的乘法构成一个群,则称为 G G G子群

  • (1) 对于任意群 G G G至少有两个子群:一个是 G G G本身,另一个是包含单位元的子集 e {e} e,它们称为平凡子群,其他称为真子群
    • G G G的单位元和子集H的单位元是同一的
    • a ∈ H a\in H aH,且 a − 1 a^ {-1} a1 a a a G G G 中的逆元,则 a − 1 ∈ H a^ {-1}\in H a1H
  • (2) 非空子集H构成一个子群的充分必要条件是:
    • 对于任意的 a , b ∈ H a,b\in H abH,有 a b ∈ H ab\in H abH(封闭性)
    • 对于任意的 a ∈ H a\in H aH,有 a − 1 ∈ H a^{-1}\in H a1H(逆元)
  • (3)一个集合 A A A到另一个集合 B B B的映射 f f f是对于任意 a ∈ A a\in A aA,都有唯一确定的
    b = f ( a ) ∈ B b=f(a)\in B b=f(a)B
    与之对应。 b b b称为 a a a f f f下的,而 a a a称为 b b b f f f下的原像,如下图。

映射关系

对于任意 a , b ∈ A a,b\in A abA ,如果 a ≠ b a\neq b a=b ,有 f ( a ) ≠ f ( b ) f(a)\neq f(b) f(a)=f(b),则称为 f f f单射。对于任意 b ∈ B b\in B bB ,总有 a ∈ A a\in A aA,使 f ( a ) = b f(a)=b f(a)=b,则称 f f f满射。既是满射又是单射的映射称为一一映射。单射的含义是 A A A中的不同的元素在B中有不同的像。满射是 B B B中的每个元素都成为 A A A中元素的一个

  • 第二章小结:(1) 要理解半群和群G的区别,半群要满足结合律和封闭性,群则是不仅要满足结合律和封闭性,而且需要满足存在左(右)单位元和左(右)逆元;(2) 理解封闭性、逆元的含义,以及”像“和”原像“等概念。

三、循环群与群的结构

3.1 循环群

定义3.1:如果一个群 G G G里的元素都是某一个元素 g g g,则 G G G称为循环群 g g g称为 G G G的一个生成元。由 g g g生成的循环群记为 ( g ) (g) (g) ⟨ g ⟩ \langle g\rangle g

  • 无限循环群可表示为:{ . . . , g − 2 , g − 1 , g 0 , g 1 , g 2 , . . . ..., g^{-2}, g^{-1}, g^{0}, g^{1}, g^{2},... ...,g2,g1,g0,g1,g2,...},其中 g 0 = e g^{0}=e g0=e
  • 有限n阶循环群可表示为:{ g 0 , g 1 , g 2 , . . . , g n g^{0}, g^{1}, g^{2},..., g^{n} g0,g1,g2,...,gn}, 其中 g 0 = e g^{0}=e g0=e

循环群的几个性质:

  • (1)循环群是交换群
  • (2) n n n阶循环群中, g n = e g^{n}=e gn=e
  • (3)由于 n n n阶循环群中 g n = e g^{n}=e gn=e,则可以得到:设 i 、 j i、j ij是任意整数,如果 i = j ( m o d n ) i=j\pmod n i=j(modn),则
    g i = g j g^{i}=g^{j} gi=gj
    g i g^{i} gi逆元为 g − i = g n − i g^{-i}=g^{n-i} gi=gni

3.2 剩余类群

特殊的循环群——剩余类群

由同余概念,将全体整数 Z Z Z进行分类,设 m m m正整数,把 m m m同余的整数归为一类,即可表示为
a = q m + r , 0 ⩽ r < m , q = 0 , ± 1 , ± 2 , . . . a=qm+r,0\leqslant r<m,q=0,\pm 1, \pm2,... a=qm+r0r<mq=0,±1,±2,...
的整数是一个模 m m m为一类,称为剩余类,剩余类中的每个数都称为该类的剩余代表 r r r称为该类的最小非负剩余

  • 例如模8的剩余类为
    0 ‾ = \overline{0}= 0={ 0 , ± 8 , ± 2 × 8 , ± 3 × 8 , . . . 0,\pm8, \pm2\times 8, \pm3\times8,... 0,±8,±2×8,±3×8,... }
    1 ‾ = \overline{1}= 1={ 1 , 1 ± 8 , 1 ± 2 × 8 , 1 ± 3 × 8 , . . . 1,1\pm8, 1\pm2\times 8, 1\pm3\times8,... 1,1±8,1±2×8,1±3×8,... }
    2 ‾ = \overline{2}= 2={ 2 , 2 ± 8 , 2 ± 2 × 8 , 2 ± 3 × 8 , . . . 2,2\pm8, 2\pm2\times 8, 2\pm3\times8,... 2,2±8,2±2×8,2±3×8,... }

    7 ‾ = \overline{7}= 7={ 7 , 7 ± 8 , 7 ± 2 × 8 , 7 ± 3 × 8 , . . . 7,7\pm8, 7\pm2\times 8, 7\pm3\times8,... 7,7±8,7±2×8,7±3×8,... }

定理3.1:模 m m m的全体剩余类集合对于剩余类加法构成 m m m阶循环群。注意对于加法,元素的“”就是元素的连加

  • 第三章小结:(1)需要记住循环群的几个性质;(2)剩余类往往在其上方加一横杠,即 0 ‾ 、 1 ‾ 、 2 ‾ \overline{0}、\overline{1}、\overline{2} 012这种方式。

四、环

定义4.1:设 R R R是一非空集合,在 R R R上定义了加法乘法两种代数运算,分别记为“ + + +”和“ ⋅ · ,如果R具有如下性质:

  • (1) R R R 对于加法 + + +是一个交换群
  • (2) R R R 对于乘法 ⋅ · 是封闭的
  • (3) 乘法满足结合律,即对于任意 a 、 b 、 c ∈ R a、b、c\in R abcR,有 a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a·(b·c)=(a·b)·c a(bc)=(ab)c
  • (4) 分配律成立,即对于任意 a 、 b 、 c ∈ R a、b、c\in R abcR,有 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a·(b+c)=a·b+a·c a(b+c=ab+ac ( b + c ) ⋅ a = b ⋅ a + c ⋅ a (b+c)·a=b·a+c·a (b+c)a=ba+ca

( R , + , ⋅ ) (R, +, ·) (R,+,⋅)为一个环环对于加法构成交换群,对于乘法满足封闭性和结合律,又对加法和乘法满足分配律。如果环 R R R关于乘法还满足交换律,即对于任意,总有,则称 R R R交换环

全体整数集合 Z Z Z构成的环是交换环

由于里存在两种运算,因此把加法群单位元称为零元,记 0 0 0,元素的加法逆元称为负元,记 − a -a a。而继续把乘法单位元和乘法逆元分别称为单位元逆元,用 1 1 1 a − 1 a^{-1} a1表示。

定义4.2:如果在一个环 R R R a ≠ 0 a\neq 0 a=0 b ≠ 0 b\neq 0 b=0,但
a b = 0 ab=0 ab=0

则称 a a a是这个环的一个左零因子 b b b是这个环的一个右零因子。显然交换环里每个左零因子同时是右零因子。若左右零因子同时存在,则称为零因子

4.1 整环、除环与域

定义4.3:如果一个环 R R R满足下列条件:

  • (1) R R R交换环
  • (2) 存在单位元,且 1 ≠ 0 1\neq 0 1=0
  • (3) 没有零因子

R R R称为整环整数环、全体有理数、全体实数和全体复数都是整环
条件(2)中 1 ≠ 0 1\neq 0 1=0意味着环中不止一个元素,或存在非零元

定义4.4:若一个环 R R R存在非零元,而且全体非零元构成一个乘法群,则 R R R称为除环。全体有理数 Q Q Q、全体实数 R R R和全体复数 C C C对于普通的加法和乘法都是除环

定义4.5一个交换除环称为一个域 。如果一个环 F F F存在非零元,而且全体非零元构成一个乘法交换群, F F F称为一个域。全体有理数 Q Q Q、全体实数 R R R和全体复数 C C C对于普通的加法和乘法都是域

p p p 是素数时,模 p p p剩余类集合对于剩余类加法和乘法构成一个域,记为 G F ( p ) GF(p) GF(p)

从群的角度出发,则一个集合 F F F是一个域应该满足以下3个条件:

  • (1) 构成加法交换群
  • (2) 非零元构成乘法交换群
  • (3) 满足分配律

从域、除环、无零因子环和环的定义,可以知道域一定是除环除环一定是无零因子环

域、除环、无零因子和环的关系

4.2 环的同态与理想

定义4.6 ( R , + , ⋅ ) (R, +, ·) (R,+,⋅) ( R ′ , ⊕ , ⊗ ) (R^{'},\oplus, \otimes) (R,,)是两个环,如果存在 R R R R ′ R^{'} R的一个映射 f f f,加法和乘法都在 f f f 下得到保持,即对任意
f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b)
f ( a + b ) = f ( a ) + f ( b ) f(a+b)=f(a)+f(b) f(a+b)=f(a)+f(b)

则称 f f f R R R R ′ R^{'} R同态映射,或简称同态。如果 f f f单射,则称为 f f f单同态。如果 f f f满射,则称为 f f f满同态。如果 f f f一一映射,则称 f f f 是同构(映射),此时称 ( R , + , ⋅ ) (R, +, ·) (R,+,⋅) ( R ′ , ⊕ , ⊗ ) (R^{'},\oplus, \otimes) (R,,)是同构,并用 R ≅ R ′ R\cong R^{'} RR表示。

  • 第四章小结:(1) 整环与除环的区别:除环少了交换性,增加了乘法群。相同处:都有单位元,都是无零因子环;不同处:前者可以是零环,而后者不行;(2) 整环的优点(可换性)与除环的优点(可逆性)凑合在一起,就成了——域;(3) 集合F是一个域需要满足三个条件:构成加法交换群、非零元构成乘法交换群和满足分配律;(4)域一定是除环,除环包含了域。

五、多项式环与有限域

5.1 多项式环

定义5.1:设 F F F是一个域,设 a ≠ 0 a\neq 0 a=0。则称
f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 ( a i ∈ F , n 是非负整数 ) f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0}(a_{i}\in F, n是非负整数) f(x)=anxn+an1xn1+...+a1x+a0aiF,n是非负整数)

  • (1) f ( x ) f(x) f(x) F F F上的一元 n n n次多项式,其中 x x x是一个未定元。
  • (2) 称 a n x n a_{n}x^{n} anxn f ( x ) f(x) f(x)首项 n n n是多项式 f ( x ) f(x) f(x)次数,记 d e g ( f ( x ) ) = n deg(f(x))=n deg(f(x))=n
  • (3) 如果 a n = 1 a_{n}=1 an=1,则称 f ( x ) f(x) f(x)首一多项式
  • (4) 如果 f ( x ) = a n ≠ 0 f(x)=a_{n}\neq 0 f(x)=an=0,则约定 d e g ( f ( x ) ) = 0 deg(f(x))=0 deg(f(x))=0,为零次多项式
  • (5) F F F上的全体一元多项式的集合 F ( x ) F(x) F(x)表示。
  • (6) 当 a i a_{i} ai全为 0 0 0时,即 f ( x ) = 0 f(x)=0 f(x)=0,称为零多项式

G F ( 2 ) GF(2) GF(2)上的两个多项式 ( G F ( 2 ) (GF(2) (GF(2)的两个元素表示为 0 0 0 1 1 1)

定理5.1 F [ x ] F[x] F[x]是具有单位元的整环

定义5.2:对于 f ( x ) 、 g ( x ) ∈ F [ x ] f(x)、g(x)\in F[x] f(x)g(x)F[x] f ( x ) ≠ 0 f(x)\neq 0 f(x)=0。如果存在 q ( x ) ∈ F [ X ] q(x)\in F[X] q(x)F[X],使得 g ( x ) = q ( x ) f ( x ) g(x)=q(x)f(x) g(x)=q(x)f(x),则 f ( x ) f(x) f(x)整除 g ( x ) g(x) g(x),记 f ( x ) ∣ g ( x ) f(x)|g(x) f(x)g(x) f ( x ) f(x) f(x)称为 g ( x ) g(x) g(x)因式。如果 ( f ( x ) ) k ∣ g ( x ) (f(x))^{k}|g(x) (f(x))kg(x),但 ( f ( x ) ) k + 1 ∣ g ( x ) (f(x))^{k+1}|g(x) (f(x))k+1g(x)不能整除g(x),则 f ( x ) f(x) f(x) g ( x ) g(x) g(x) k k k重因式

定理5.2欧几里得算法。对于多项式 f ( x ) 、 g ( x ) f(x)、g(x) f(x)g(x),其中 d e g ( f ( x ) ) ⩽ d e g ( g ( x ) ) deg(f(x))\leqslant deg(g(x)) deg(f(x))deg(g(x))。反复进行欧几里得算法,得到下列方程式:
g ( x ) = q 1 ( x ) f ( x ) + r 1 ( x ) , d e g ( r 1 ( x ) ) < d e g ( f ( x ) ) g(x)=q_{1}(x)f(x)+r_{1}(x), deg(r_{1}(x))<deg(f(x)) g(x)=q1(x)f(x)+r1(x),deg(r1(x))<deg(f(x))
f ( x ) = q 2 ( x ) r 1 ( x ) + r 2 ( x ) , d e g ( r 2 ( x ) ) < d e g ( r 1 ( x ) ) f(x)=q_{2}(x)r_{1}(x)+r_{2}(x), deg(r_{2}(x))<deg(r_{1}(x)) f(x)=q2(x)r1(x)+r2(x),deg(r2(x))<deg(r1(x))
r 1 ( x ) = q 3 ( x ) r 2 ( x ) + r 3 ( x ) , d e g ( r 3 ( x ) ) < d e g ( r 2 ( x ) ) r_{1}(x)=q_{3}(x)r_{2}(x)+r_{3}(x), deg(r_{3}(x))<deg(r_{2}(x)) r1(x)=q3(x)r2(x)+r3(x),deg(r3(x))<deg(r2(x))

r m − 2 ( x ) = q m ( x ) r m − 1 ( x ) + r m ( x ) , d e g ( r m ( x ) ) < d e g ( r m − 1 ( x ) ) r_{m-2}(x)=q_{m}(x)r_{m-1}(x)+r_{m}(x), deg(r_{m}(x))<deg(r_{m-1}(x)) rm2(x)=qm(x)rm1(x)+rm(x),deg(rm(x))<deg(rm1(x))
r m − 1 ( x ) = q m + 1 ( x ) r m ( x ) + r 3 ( x ) r_{m-1}(x)=q_{m+1}(x)r_{m}(x)+r_{3}(x) rm1(x)=qm+1(x)rm(x)+r3(x)于是有 r m ( x ) = ( f ( x ) , g ( x ) ) r_{m}(x)=(f(x),g(x)) rm(x)=(f(x),g(x))
定义5.3:设 p ( x ) ∈ F [ x ] p(x)\in F[x] p(x)F[x]为一多项式,且 d e g ( p ( x ) ) ≥ 1 deg(p(x))\geq 1 deg(p(x))1,如果 p ( x ) p(x) p(x) F [ x ] F[x] F[x]内的因式仅有零次多项式 c p ( x ) ( c ≠ 0 ∈ F ) cp(x)(c\neq 0 \in F) cp(x)(c=0F) ,则称 p ( x ) p(x) p(x) F [ x ] F[x] F[x]内的一个不可约多项式,否则称为可约多项式

G F ( 2 ) [ x ] GF(2)[x] GF(2)[x](二元域上,判断一次因式,只需把 0 0 0 1 1 1代入,判断是否为 0 0 0,为 0 0 0则为可约,不为 0 0 0不可约)四次以内的不可约多项式。

  • (1) 0次,多项式为1;
  • (2) 1次,多项式为 x , x + 1 x, x+1 x,x+1
  • (3) 2次,多项式为 x 2 + x + 1 x^{2}+x+1 x2+x+1
  • (4) 3次,多项式为 x 3 + x 2 + 1 , x 3 + x + 1 x^{3}+x^{2}+1, x^{3}+x+1 x3+x2+1,x3+x+1
  • (5) 4次,多项式为 x 4 + x + 1 , x 4 + x 3 + 1 , x 4 + x 3 + x 2 + x + 1 x^{4}+x+1, x^{4}+x^{3}+1, x^{4}+x^{3}+x^{2}+x+1 x4+x+1,x4+x3+1,x4+x3+x2+x+1

G F ( 2 ) [ x ] GF(2)[x] GF(2)[x]上有 ( f ( x ) + g ( x ) ) 2 = ( f ( x ) ) 2 + ( g ( x ) ) 2 (f(x)+g(x))^{2}=(f(x))^{2}+(g(x))^{2} (f(x)+g(x))2=(f(x))2+(g(x))2

5.2 多项式剩余类环

定义5.4:设 f ( x ) ∈ F [ x ] f(x)\in F[x] f(x)F[x]是首一多项式。对于 a ( x ) 、 b ( x ) ∈ F [ x ] a(x)、b(x)\in F[x] a(x)b(x)F[x],如果 f ( x ) f(x) f(x) a ( x ) 、 b ( x ) a(x)、b(x) a(x)b(x) 得相同的余式,即
a ( x ) = q 1 ( x ) f ( x ) + r ( x ) a(x)=q_{1}(x)f(x)+r(x) a(x)=q1(x)f(x)+r(x)
b ( x ) = q 2 ( x ) f ( x ) + r ( x ) b(x)=q_{2}(x)f(x)+r(x) b(x)=q2(x)f(x)+r(x)

则称 a ( x ) a(x) a(x) b ( x ) b(x) b(x)关于 f ( x ) f(x) f(x)模同余,记为
a ( x ) ≡ b ( x ) ( m o d f ( x ) ) a(x)\equiv b(x)\pmod {f(x)} a(x)b(x)(modf(x))
定理5.3:设 f ( x ) ∈ F [ x ] f(x)\in F[x] f(x)F[x]是一个首一多项式,且 d e g ( f ( x ) ) > 0 deg(f(x))>0 deg(f(x))>0,则 F [ x ] ( m o d f ( x ) ) F[x]\pmod {f(x)} F[x](modf(x))构成具有单位元的交换环,称为多项式剩余类环

定理5.4:如果 f ( x ) f(x) f(x) F F F上的首一不可约多项式,则 F [ x ] ( m o d f ) ( x ) F[x]\pmod f(x) F[x](modf)(x)构成有限域。

5.3 有限域

定义5.5:有限个元素构成的域称为有限域或 G a l o i s Galois Galois(伽罗瓦)域。域中元素的个数称为有限域的

  • 例:当 p p p是素数时,模 p p p剩余类集合
    { 0 ‾ , 1 ‾ , 2 ‾ , . . . , p − 1 ‾ } \lbrace \overline{0}, \overline{1},\overline{2}, ..., \overline{p-1} \rbrace {0,1,2,...,p1}
    构成 p p p阶有限域 G F ( p ) GF(p) GF(p)

定义5.6 q q q阶有限域中阶为 q − 1 q-1 q1的元素称为本原域元素,简称本原元

定理5.5有限域中一定含有本原元。在一个无零因子环 R R R里所有非零元的加法阶都相同。当加法阶有限时,它是一个素数

定义5.7:域中非零元的加法阶称为环的特征,当加法阶为无限大时,称特征为 0 0 0。如果一个域F不再含有真子集作为 F F F的子域,则 F F F为素域

定理5.6:阶为素数的有限域必为素域。

  • (1) 素数 p p p阶域的特征为 p p p
  • (2) 任何素数 p p p阶域与 G F ( 2 ) GF(2) GF(2)同构。

定理5.7:有限域的阶必为其特征之幂。一般有限域记为 G F ( p m ) GF(p^{m}) GF(pm),其中 p p p是域的特征, m m m是正整数。由于特征总是素数,则有限域的阶总为素数的幂。

  • 第五章小结:(1)要注意零次多项式是只有常数项的多项式,零多项式是等于0;(2) 欧几里得和不可约多项式非常重要,需要多加深理解;(3)有限域则是必须掌握的知识点。

六、同余式

6.1 剩余系

回顾剩余类:设 m m m是正整数, m m m同余的全体整数是一个模 m m m剩余类,即可表示为
a = q m + r , 0 ⩽ r < m , q = 0 , ± 1 , ± 2 , . . . a=qm+r,0\leqslant r<m,q=0,\pm 1, \pm2,... a=qm+r0r<mq=0,±1,±2,...

的整数是一个模 m m m为一类,称为剩余类,剩余类中的每个数都称为该类的剩余代表 r r r称为该类的最小非负剩余

定义6.1:从模 m m m剩余类中各取一个代表,则称这些代表的集合为模 m m m的一个完全剩余系

定义6.2:如果一个模 m m m的剩余类里面的数与m互素,则称它为与 m m m互素的剩余类。从与模 m m m互素的每个剩余类中各取一个数构成的集合称为模 m m m的一个简化剩余系

定理6.1:模 m m m剩余类环中与 m m m互素的剩余类构成乘法群。

欧拉函数 φ ( m ) \varphi (m) φ(m)表示小于或等于 m m m的正整数中 m m m互质的数的数量。例如 φ ( 8 ) = 4 \varphi (8)=4 φ(8)=4 ,因为 1 、 3 、 5 、 7 1、3、5、7 1357均和 8 8 8互质(互素)。 m m m为质数时 φ ( m ) = m − 1 \varphi (m)=m-1 φ(m)=m1 ,以及 φ ( p k ) = p k ( 1 − 1 p ) \varphi (p^{k})=p^{k}(1-\frac 1p) φ(pk)=pk(1p1)

(欧拉定理):设 m m m是正整数,如果 ( r , m ) = 1 (r,m)=1 (r,m)=1 ,则
r φ ( m ) ≡ 1 ( m o d m ) r^{\varphi (m)} \equiv 1\pmod m rφ(m)1(modm)

(费马定理):如果 p p p是素数,则
r p ≡ r ( m o d p ) r^{p} \equiv r\pmod p rpr(modp)

6.2 中国剩余定理

通常中国剩余定理是求解同余式组的解,例
x ≡ b 1 ( m o d m ) 1 x\equiv b_{1}\pmod m_{1} xb1(modm)1
x ≡ b 2 ( m o d m ) 2 x\equiv b_{2}\pmod m_{2} xb2(modm)2
⋮ \vdots
x ≡ b k ( m o d m ) k x\equiv b_{k}\pmod m_{k} xbk(modm)k

(中国剩余定理):设 m 1 , m 2 , … , m k m_{1} , m_{2}, \ldots, m_{k} m1,m2,,mk两两互素,则上面的同余式组有唯一解
x ≡ M 1 − 1 M 1 b 1 + M 2 − 1 M 2 b 2 + ⋮ + M k − 1 M k b k ( m o d m ) x\equiv M_1^{-1}M_1b_1+M_2^{-1}M_2b_2+\vdots +M_k^{-1}M_kb_k\pmod m xM11M1b1+M21M2b2++Mk1Mkbk(modm)
其中 m = m 1 m 2 … m k m=m_1m_2\ldots m_k m=m1m2mk, M 1 = m m i M_1=\frac mm_i M1=mmi M 1 − 1 M 1 ≡ 1 ( m o d m i ) M_1^{-1}M_1\equiv 1\pmod {m_i} M11M11(modmi) i = 1 , 2 , . . . , k i=1,2,...,k i=1,2,...,k

  • :求解以下同余式组的解
    x ≡ 2 ( m o d 3 ) x\equiv 2\pmod 3 x2(mod3)
    x ≡ 3 ( m o d 5 ) x\equiv 3\pmod 5 x3(mod5)
    x ≡ 2 ( m o d 7 ) x\equiv 2\pmod 7 x2(mod7)
    解答过程如下:
    m 1 = 3 , m 2 = 5 , m 3 = 7 , m = 3 × 5 × 7 = 105 m_1=3, m_2=5, m_3=7, m=3\times 5\times7=105 m1=3,m2=5,m3=7,m=3×5×7=105
    M 1 = 5 × 7 = 35 , M 1 − 1 = 2 ( m o d 3 ) M_1=5\times 7=35, M_1^{-1}=2\pmod 3 M1=5×7=35,M11=2(mod3)
    M 2 = 3 × 7 = 21 , M 2 − 1 = 1 ( m o d 5 ) M_2=3\times 7=21, M_2^{-1}=1\pmod 5 M2=3×7=21,M21=1(mod5)
    M 3 = 3 × 5 = 15 , M 3 − 1 = 1 ( m o d 7 ) M_3=3\times 5=15, M_3^{-1}=1\pmod 7 M3=3×5=15,M31=1(mod7)
    x ≡ M 1 − 1 M 1 b 1 + M 2 − 1 M 2 b 2 + M 3 − 1 M 3 b 3 ≡ 2 × 35 × 2 + 1 × 21 × 3 + 1 × 15 × 2 ≡ 23 ( m o d 15 ) x\equiv M_1^{-1}M_1b_1+M_2^{-1}M_2b_2+M_3^{-1}M_3b_3\equiv 2\times35\times2+1\times21\times3+1\times 15\times2\equiv 23\pmod {15} xM11M1b1+M21M2b2+M31M3b32×35×2+1×21×3+1×15×223(mod15)
  • 第六章小结:相同剩余的一个剩余类中有一个元素与 m m m互素,则其中所有元素都与 m m m互素。

七、平方剩余

定义7.1:设 p p p是奇素数,即大于2的素数,如果二次同余式

有解, a a a称为模 p p p平方剩余,否 a a a称为模 p p p平方非剩余。有些也将平方剩余和平方非剩余分别称为二次剩余二次非剩余

  • 例:求出 p = 5 、 7 p=5、7 p=57时的平方剩余和平方非剩余。
    解: p = 5 p=5 p=5时,由于
    1 2 ≡ 1 ( m o d 5 ) 1^{2}\equiv 1\pmod 5 121(mod5)
    2 2 ≡ 4 ( m o d 5 ) 2^{2}\equiv 4\pmod 5 224(mod5)
    3 2 ≡ 4 ( m o d 5 ) 3^{2}\equiv 4\pmod 5 324(mod5)
    4 2 ≡ 1 ( m o d 5 ) 4^{2}\equiv 1\pmod 5 421(mod5)
    所以 1 、 4 1、4 14是模 5 5 5的平方剩余,而 2 、 3 2、3 23是模 5 5 5的平方非剩余
    p = 7 p=7 p=7时,由于
    1 2 ≡ 1 ( m o d 7 ) 1^{2}\equiv 1\pmod 7 121(mod7)
    2 2 ≡ 4 ( m o d 7 ) 2^{2}\equiv 4\pmod 7 224(mod7)
    3 2 ≡ 2 ( m o d 7 ) 3^{2}\equiv 2\pmod 7 322(mod7)
    4 2 ≡ 2 ( m o d 7 ) 4^{2}\equiv 2\pmod 7 422(mod7)
    5 2 ≡ 4 ( m o d 7 ) 5^{2}\equiv 4\pmod 7 524(mod7)
    6 2 ≡ 1 ( m o d 7 ) 6^{2}\equiv 1\pmod 7 621(mod7)
    所以 1 、 2 、 4 1、2、4 124是模 7 7 7的平方剩余,而 3 、 5 、 6 3、5、6 356是模 7 7 7的平方非剩余。

定理7.1:设 p p p是奇素数。在模 p p p的简化剩余系中, p − 1 2 \frac {p-1}2 2p1个平方剩余, p − 1 2 \frac {p-1}2 2p1个平方非剩余

(欧拉判别式):设 p p p是奇素数, ( a , p ) = 1 (a, p)=1 (a,p)=1 a a a是模 p p p平方剩余的充分必要条件
a p − 1 2 ≡ 1 ( m o d p ) a^{\frac {p-1}2}\equiv 1\pmod p a2p11(modp)
a a a是模 p p p平方非剩余的充分必要条件
a p − 1 2 ≡ − 1 ( m o d p ) a^{\frac {p-1}2}\equiv -1\pmod p a2p11(modp)

7.1 勒让德符号

由于在模乘法的计算过程中需要反复的模乘运算,上节平方剩余与平方非剩余的欧拉判别法当 p p p比较大时并不方便,例如判别286在模563下是否是平方剩余,计算量非常大。而勒让德符号判别是否是平方剩余是非常有效

定义7.2 p p p是奇素数 , a a a是整数。勒让德(Legendre)符号( a p \frac ap pa)定义如下:
( a p ) = { 1 , a 是模 p 的平方剩余 − 1 , a 是模 p 的非平方剩余 0 , a 能够被 p 整除,即 p ∣ a ( \frac ap)= \begin{cases} 1, & \text{$a$是模$p$的平方剩余} \\ -1, & \text{$a$是模$p$的非平方剩余}\\ 0, & \text{$a$能够被$p$整除,即$p|a$} \end{cases} (pa)= 1,1,0,a是模p的平方剩余a是模p的非平方剩余a能够被p整除,即pa
定理7.2 p p p是奇素数, a a a是整数,则
( a p ) = a p − 1 2 ( m o d p ) (\frac ap)=a^{\frac {p-1}2}\pmod p (pa)=a2p1(modp)
勒让德符号具有下列性质:

  • (1) ( 1 p ) = 1 , ( − 1 p ) = ( − 1 ) p − 1 2 (\frac 1p)=1, (\frac {-1}p)=(-1)^{\frac {p-1}2} (p1)=1,(p1)=(1)2p1
  • (2) 如果 a ≡ b ( m o d p ) a\equiv b\pmod p ab(modp),则 ( a p ) = ( b p ) (\frac ap)=(\frac bp) (pa)=(pb)
  • (3) ( a + p p ) = ( a p ) (\frac {a+p}p)=(\frac ap) (pa+p)=(pa)
  • (4) 如果 ( a , p ) = 1 (a, p)=1 (a,p)=1,则 ( a 2 p ) = 1 (\frac {a^2}p)=1 (pa2)=1
  • (5) ( a 1 a 2 . . . a n p ) = ( a 1 p ) ( a 2 p ) . . . ( a n p ) (\frac {a_1a_2...a_n}p)=(\frac {a_1}p)(\frac {a_2}p)...(\frac {a_n}p) (pa1a2...an)=(pa1)(pa2)...(pan)

定理7.3:(二次互反律)如果 p 、 q p、q pq都是奇素数, ( p , q ) = 1 (p, q)=1 (p,q)=1 ,则 ( q p ) = ( − 1 ) p − 1 2 q − 1 2 ( p q ) (\frac qp)=(-1)^{\frac {p-1}2\frac {q-1}2}(\frac pq) (pq)=(1)2p12q1(qp)

  • 第七章小结:使用勒让德符号的计算过程中,一定要注意 p p p是奇素数。

八、总结

基本概念比较多,而且特别多的定义和定理,需要先记住慢慢理解,并结合书本上的证明加深理解。

  • 29
    点赞
  • 258
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
目 录 第1章 信息安全概述 11 1.1 信息安全的理解 11 1.1.1 信息安全的定义 11 1.1.2 信息安全的属性 11 1.4 信息安全体系结构 11 1.4.1 CIA三元组 11 1.4.2 三类风险 11 1.4.3 信息安全保障体系四个部分(PDRR)。 12 第2章 密码学基础 13 2.1 密码学基础知识 13 2.1.1 引言 13 2.1.2 密码体制 13 2.2 古典替换密码 13 2.2.1 仿射密码 13 2.3 对称密钥密码 14 2.3.1 对称密钥密码加密模式 14 2.3.2 数据加密标准DES 14 2.4 公开密钥密码 14 2.4.1 公开密钥理论基础 14 2.5 消息认证 14 2.5.2 消息认证码MAC 14 2.5.3 散列函数 15 第3章 物理安全 16 3.1 概述 16 3.4 物理隔离 16 第4章 身份认证 17 4.2 认证协议 17 4.2.1 基于对称密钥的认证协议 17 4.2.2 基于公开密钥的认证协议 17 4.3 公钥基础设施PKI 18 4.3.1 PKI体系结构 18 第5章 访问控制 19 5.1 概述 19 5.2 访问控制模型 19 5.2.1 自主访问控制 19 5.2.2 强制访问控制 20 5.2.3 基于角色的访问控制 20 5.3 Windows系统的安全管理 21 5.3.1 Windows系统安全体系结构 21 5.3.2 Windows系统的访问控制 22 第6章 网络威胁 23 6.2 计算机病毒 23 6.2.3 蠕虫病毒 23 6.2.4 木马 23 6.2.5 病毒防治 24 6.3 网络入侵 24 6.3.1 拒绝服务攻击 24 6.3.2 口令攻击 25 6.3.3 嗅探攻击 25 6.3.4 欺骗类攻击 25 6.3.5 利用型攻击 25 第7章 网络防御 27 7.1 概述 27 7.2 防火墙 27 7.3 入侵检测系统 27 7.3.2 入侵检测系统分类 28 7.3.3 入侵检测技术 28 7.3.4 Snort系统 28 7.4 网络防御的新技术 29 7.4.1 VLAN技术 29 7.4.2 IPS与IMS 29 29 7.4.3 云安全 30 第8章 网络安全协议 31 8.2 IPSec 31 8.2.1 IPSec协议族的体系结构 31 8.2.2 IPSec协议的工作方式 31 8.2.3 Internet密钥交换协议 32 8.3 SSL 32 8.3.1 SSL协议的体系结构 32 8.3.2 SSL协议规范 33 8.4 安全电子交易协议 34 8.4.2 SET协议概述 34 8.4.3 SET的安全机制 34 8.4.4 交易处理 35
当涉及到信息安全,培养正确的意识是至关重要的。以下是一些关于信息安全意识培养的学习笔记: 1. 了解常见的安全威胁:学习不同类型的安全威胁,如恶意软件、网络钓鱼、社交工程等。了解这些威胁可以帮助你更好地保护自己和他人。 2. 创建强密码:学习如何创建强密码,并确保您的密码不易猜测。使用不同的密码来保护不同的账户,并定期更改密码以增加安全性。 3. 提高对电子邮件安全的认识:学习如何识别和避免电子邮件中的欺诈行为,如垃圾邮件、钓鱼邮件和恶意附件。不要点击来自不信任来源的链接或下载未知附件。 4. 安全使用互联网:了解如何安全地浏览互联网,包括避免访问恶意网站和下载不安全的文件。使用可靠的防病毒软件和防火墙来保护您的计算机。 5. 保护个人隐私:了解如何保护个人隐私,包括在社交媒体上设置适当的隐私设置,不轻易泄露个人信息,并谨慎地共享个人信息。 6. 警惕钓鱼攻击:学习如何识别和防范钓鱼攻击。不要随意点击来自不熟悉或不可信来源的链接,确保您与合法网站进行交互。 7. 多因素身份验证:学习如何启用和使用多因素身份验证,以增加账户的安全性。这可以防止他人未经授权访问您的账户。 8. 定期备份数据:学习定期备份您的重要数据,并将备份文件存储在安全的地方。这样可以避免数据丢失或受到勒索软件的威胁。 9. 教育他人:将您学到的信息安全知识传播给家人、朋友和同事,帮助他们提高安全意识并保护自己的信息安全。 这些是关于信息安全意识培养的一些学习笔记。通过不断学习和实践,我们可以更好地保护自己和他人的信息安全

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值