《网络空间安全数学基础》最新学习笔记
这里是关于《网络空间安全数学基础》(buaa网安数基)书的个人笔记和总结,包括将一些概念(整除、同余、群、环、域、多项式等代数学基础)重点记录下来,这样容易快速记忆一些重点,建立信息安全需要掌握的数学基础。然而,这里没有相应的证明,需要详细的证明可以翻书查阅。若有错误的地方,欢迎指正,本人也同步在学习,将不断完善。(本人耗时一整天码字不易,希望对你有所帮助,仅供参考)
参考书籍《信息安全数学基础教程》(第2版),许春香 周俊辉等人编著。
附:也可直接下载PDF学习,可能里面对应的标注和内容更直观、清晰和完整。
文章目录
一、整除与同余
定义1.1:假设
a
、
b
a、b
a、b 是任意两个整数,其中
b
b
b 非零,若存在一个整数
q
q
q,使得
a
=
q
b
a=qb
a=qb
则称为
b
b
b能整除
a
a
a,或称
a
a
a能被
b
b
b整除,记为
b
∣
a
b|a
b∣a,且
b
b
b是
a
a
a的因子,
a
a
a是
b
b
b的倍数。
- 设 c > 0 c>0 c>0是两个不全为零的整数 a 、 b a、b a、b的公因子,若 a 、 b a、b a、b的任何公因子都整除c,则称为 a 、 b a、b a、b的最大公因子。记为 c = ( a , b ) c=(a, b) c=(a,b),或者 c = g c d ( a , b ) c=gcd(a, b) c=gcd(a,b)。假设 a 、 b a、b a、b是两个非零的整数,则存在两个整数 u 、 v u、v u、v使得 ( a , b ) = u a + v b (a, b)=ua+vb (a,b)=ua+vb。
- 设 m > 0 m>0 m>0是两个整数 a 、 b a、b a、b的公倍数,若 m m m整除 a 、 b a、b a、b的任何公倍数,则 m m m称为 a 、 b a、b a、b的最小公倍数,记为 m = [ a , b ] m=[a, b] m=[a,b],或者 m = l c m ( a , b ) m=lcm(a, b) m=lcm(a,b)。有 [ a , b ] = ∣ a b ∣ ( a , b ) [a, b]=\frac {|ab|}{(a, b)} [a,b]=(a,b)∣ab∣,若 ( a , b ) = 1 (a, b)=1 (a,b)=1,则 [ a , b ] = ∣ a b ∣ [a, b]=|ab| [a,b]=∣ab∣。
元素 a 、 b a、b a、b互素的充要条件是,存在 u 、 v u、v u、v使 u a + v b = 1 ua+vb=1 ua+vb=1,则由 ( a , b ) ∣ ( u a + v b ) (a, b)|(ua+vb) (a,b)∣(ua+vb),得 ( a , b ) ∣ 1 (a, b)|1 (a,b)∣1,所以 ( a , b ) = 1 (a, b)=1 (a,b)=1。
- 对于正整数 n n n和整数 a a a, a − 1 m o d n a^{-1} mod n a−1modn存在的充分必要条件为 ( a , n ) = 1 (a, n)=1 (a,n)=1
如: a − 1 ( m o d n ) ⇒ a^{-1} \pmod n\Rightarrow a−1(modn)⇒存在整数 b b b 使得 a b ( m o d n ) = 1 ab \pmod n=1 ab(modn)=1。
- 例1: 7 − 1 ( m o d 13 ) = ? 7^{-1}\pmod {13}=? 7−1(mod13)=?解:因为 7 ∗ 2 ( m o d 13 ) = 1 7*2 \pmod {13} =1 7∗2(mod13)=1,所以 7 − 1 ( m o d 13 ) = 2 7^{-1}\pmod {13} = 2 7−1(mod13)=2。
定义1.2:设 x ∈ R x \in R x∈R, ≤ x \leq x ≤x的最大整数称为 x x x的整数部分,记为 ⌊ x ⌋ \lfloor x\rfloor ⌊x⌋。其中 ⌊ x ⌋ ≤ x ≤ ⌊ x ⌋ + 1 \lfloor x\rfloor\leq x\leq \lfloor x\rfloor+1 ⌊x⌋≤x≤⌊x⌋+1。
定义1.3:给定称为模的正整数
m
m
m,若
m
m
m除整数
a
、
b
a、b
a、b得相同的余数,即存在整数
q
1
q_{1}
q1和
q
2
q_{2}
q2使得
a
=
q
1
m
+
r
,
b
=
q
2
m
+
r
a=q_{1}m+r,b=q_{2}m+r
a=q1m+r,b=q2m+r
则称
a
a
a和
b
b
b关于模
m
m
m同余,记为
a
≡
b
(
m
o
d
m
)
a\equiv b\pmod m
a≡b(modm)
a
a
a和
b
b
b关于模
m
m
m同余的充分必要条件为:
m
∣
(
a
−
b
)
m|(a-b)
m∣(a−b),即
a
=
b
+
m
t
a=b+mt
a=b+mt,
t
t
t是整数。
- 第一章小结:(1) 重点记住”整除“和”被整除“的关系,通常为小的数整除大的数,大的数被小的数整除;(2) 注意 g c d = ( a , b ) gcd=(a, b) gcd=(a,b)表示最大公因子(greatest common divisor, gcd), l c m = [ a , b ] lcm=[a, b] lcm=[a,b]表示最小公倍数(least common multiple, lcm);(3)需要注意定义1.2中是 ⌊ x ⌋ \lfloor x\rfloor ⌊x⌋不是 [ x ] [x] [x]。
二、群
2.1 群
定义2.1:设 S S S是一个非空集合,如果在 S S S上定义了一个代数运算,称为乘法 ·,记为 a ⋅ b a·b a⋅b。对于乘法,根据习惯可省略乘号写成 a b ab ab ,且满足下列条件,则称 ( S , ⋅ ) (S, ·) (S,⋅) 为一个半群。
- S S S关于乘法 · 是封闭的,即对于 S S S中任意元素 a 、 b a、b a、b,有 a ⋅ b a·b a⋅b 属于 S S S。
- S S S对于乘法 ·,结合律成立,即对于 S S S中任意元素 a 、 b 、 c a 、 b、c a、b、c ,有 a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a·(b·c)=(a·b)·c a⋅(b⋅c)=(a⋅b)⋅c。
则用”乘法“定义的群称为乘法半群;用”加法“定义的群称为加法半群。
- 半群必须满足封闭性和结合律;
- 另外群还要满足左单位元 e ( e ⋅ a = a ) e(e·a=a) e(e⋅a=a)和左逆元 b ( b ⋅ a = e ) b(b·a=e) b(b⋅a=e);
- 若群中的运算满足交换律,则这个群称为交换群或阿贝尔(Abel)群;
- 若群 G G G中元素的个数是无限多个,称为 G G G是无限群,若有限个,称为有限群, G G G中元素的个数称为群的阶,记为 ∣ G ∣ |G| ∣G∣。
2.2 子群
定义2.2:一个群 G G G的一个子集 H H H如果对于 G G G的乘法构成一个群,则称为 G G G的子群。
- (1) 对于任意群
G
G
G都至少有两个子群:一个是群
G
G
G本身,另一个是包含单位元的子集
e
{e}
e,它们称为平凡子群,其他称为真子群。
- G G G的单位元和子集H的单位元是同一的;
- 若 a ∈ H a\in H a∈H,且 a − 1 a^ {-1} a−1是 a a a 在 G G G 中的逆元,则 a − 1 ∈ H a^ {-1}\in H a−1∈H。
- (2) 非空子集H构成一个子群的充分必要条件是:
- 对于任意的 a , b ∈ H a,b\in H a,b∈H,有 a b ∈ H ab\in H ab∈H;(封闭性)
- 对于任意的 a ∈ H a\in H a∈H,有 a − 1 ∈ H a^{-1}\in H a−1∈H。(逆元)
- (3)一个集合
A
A
A到另一个集合
B
B
B的映射
f
f
f是对于任意
a
∈
A
a\in A
a∈A,都有唯一确定的
b = f ( a ) ∈ B b=f(a)\in B b=f(a)∈B
与之对应。 b b b称为 a a a在 f f f下的像,而 a a a称为 b b b在 f f f下的原像,如下图。
对于任意 a , b ∈ A a,b\in A a,b∈A ,如果 a ≠ b a\neq b a=b ,有 f ( a ) ≠ f ( b ) f(a)\neq f(b) f(a)=f(b),则称为 f f f为单射。对于任意 b ∈ B b\in B b∈B ,总有 a ∈ A a\in A a∈A,使 f ( a ) = b f(a)=b f(a)=b,则称 f f f为满射。既是满射又是单射的映射称为一一映射。单射的含义是 A A A中的不同的元素在B中有不同的像。满射是 B B B中的每个元素都成为 A A A中元素的一个像。
- 第二章小结:(1) 要理解半群和群G的区别,半群要满足结合律和封闭性,群则是不仅要满足结合律和封闭性,而且需要满足存在左(右)单位元和左(右)逆元;(2) 理解封闭性、逆元的含义,以及”像“和”原像“等概念。
三、循环群与群的结构
3.1 循环群
定义3.1:如果一个群 G G G里的元素都是某一个元素 g g g的幂,则 G G G称为循环群, g g g称为 G G G的一个生成元。由 g g g生成的循环群记为 ( g ) (g) (g)或 ⟨ g ⟩ \langle g\rangle ⟨g⟩。
- 无限循环群可表示为:{ . . . , g − 2 , g − 1 , g 0 , g 1 , g 2 , . . . ..., g^{-2}, g^{-1}, g^{0}, g^{1}, g^{2},... ...,g−2,g−1,g0,g1,g2,...},其中 g 0 = e g^{0}=e g0=e。
- 有限n阶循环群可表示为:{ g 0 , g 1 , g 2 , . . . , g n g^{0}, g^{1}, g^{2},..., g^{n} g0,g1,g2,...,gn}, 其中 g 0 = e g^{0}=e g0=e。
循环群的几个性质:
- (1)循环群是交换群;
- (2)在 n n n阶循环群中,有 g n = e g^{n}=e gn=e;
- (3)由于
n
n
n阶循环群中
g
n
=
e
g^{n}=e
gn=e,则可以得到:设
i
、
j
i、j
i、j是任意整数,如果
i
=
j
(
m
o
d
n
)
i=j\pmod n
i=j(modn),则
g i = g j g^{i}=g^{j} gi=gj
g i g^{i} gi的逆元为 g − i = g n − i g^{-i}=g^{n-i} g−i=gn−i。
3.2 剩余类群
特殊的循环群——剩余类群。
由同余概念,将全体整数
Z
Z
Z进行分类,设
m
m
m是正整数,把模
m
m
m同余的整数归为一类,即可表示为
a
=
q
m
+
r
,
0
⩽
r
<
m
,
q
=
0
,
±
1
,
±
2
,
.
.
.
a=qm+r,0\leqslant r<m,q=0,\pm 1, \pm2,...
a=qm+r,0⩽r<m,q=0,±1,±2,...
的整数是一个模
m
m
m为一类,称为剩余类,剩余类中的每个数都称为该类的剩余或代表,
r
r
r称为该类的最小非负剩余。
- 例如模8的剩余类为
0 ‾ = \overline{0}= 0={ 0 , ± 8 , ± 2 × 8 , ± 3 × 8 , . . . 0,\pm8, \pm2\times 8, \pm3\times8,... 0,±8,±2×8,±3×8,... }
1 ‾ = \overline{1}= 1={ 1 , 1 ± 8 , 1 ± 2 × 8 , 1 ± 3 × 8 , . . . 1,1\pm8, 1\pm2\times 8, 1\pm3\times8,... 1,1±8,1±2×8,1±3×8,... }
2 ‾ = \overline{2}= 2={ 2 , 2 ± 8 , 2 ± 2 × 8 , 2 ± 3 × 8 , . . . 2,2\pm8, 2\pm2\times 8, 2\pm3\times8,... 2,2±8,2±2×8,2±3×8,... }
…
7 ‾ = \overline{7}= 7={ 7 , 7 ± 8 , 7 ± 2 × 8 , 7 ± 3 × 8 , . . . 7,7\pm8, 7\pm2\times 8, 7\pm3\times8,... 7,7±8,7±2×8,7±3×8,... }
定理3.1:模 m m m的全体剩余类集合对于剩余类加法构成 m m m阶循环群。注意对于加法,元素的“幂”就是元素的连加。
- 第三章小结:(1)需要记住循环群的几个性质;(2)剩余类往往在其上方加一横杠,即 0 ‾ 、 1 ‾ 、 2 ‾ \overline{0}、\overline{1}、\overline{2} 0、1、2这种方式。
四、环
定义4.1:设 R R R是一非空集合,在 R R R上定义了加法和乘法两种代数运算,分别记为“ + + +”和“ ⋅ · ⋅ ”,如果R具有如下性质:
- (1) R R R 对于加法 + + +是一个交换群;
- (2) R R R 对于乘法 ⋅ · ⋅ 是封闭的;
- (3) 乘法满足结合律,即对于任意 a 、 b 、 c ∈ R a、b、c\in R a、b、c∈R,有 a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c a·(b·c)=(a·b)·c a⋅(b⋅c)=(a⋅b)⋅c;
- (4) 分配律成立,即对于任意 a 、 b 、 c ∈ R a、b、c\in R a、b、c∈R,有 a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a·(b+c)=a·b+a·c a⋅(b+c)=a⋅b+a⋅c, ( b + c ) ⋅ a = b ⋅ a + c ⋅ a (b+c)·a=b·a+c·a (b+c)⋅a=b⋅a+c⋅a。
则称 ( R , + , ⋅ ) (R, +, ·) (R,+,⋅)为一个环。环对于加法构成交换群,对于乘法满足封闭性和结合律,又对加法和乘法满足分配律。如果环 R R R关于乘法还满足交换律,即对于任意,总有,则称 R R R为交换环。
全体整数集合 Z Z Z构成的环是交换环。
由于环里存在两种运算,因此把加法群的单位元称为零元,记为 0 0 0,元素的加法逆元称为负元,记为 − a -a −a。而继续把乘法单位元和乘法逆元分别称为单位元和逆元,用 1 1 1和 a − 1 a^{-1} a−1表示。
定义4.2:如果在一个环
R
R
R里
a
≠
0
a\neq 0
a=0,
b
≠
0
b\neq 0
b=0,但
a
b
=
0
ab=0
ab=0
则称 a a a是这个环的一个左零因子, b b b是这个环的一个右零因子。显然交换环里每个左零因子同时是右零因子。若左右零因子同时存在,则称为零因子。
4.1 整环、除环与域
定义4.3:如果一个环 R R R满足下列条件:
- (1) R R R是交换环;
- (2) 存在单位元,且 1 ≠ 0 1\neq 0 1=0;
- (3) 没有零因子。
则
R
R
R称为整环。整数环、全体有理数、全体实数和全体复数都是整环。
条件(2)中
1
≠
0
1\neq 0
1=0意味着环中不止一个元素,或存在非零元。
定义4.4:若一个环 R R R存在非零元,而且全体非零元构成一个乘法群,则 R R R称为除环。全体有理数 Q Q Q、全体实数 R R R和全体复数 C C C对于普通的加法和乘法都是除环。
定义4.5:一个交换除环称为一个域 。如果一个环 F F F存在非零元,而且全体非零元构成一个乘法交换群,则 F F F称为一个域。全体有理数 Q Q Q、全体实数 R R R和全体复数 C C C对于普通的加法和乘法都是域。
当 p p p 是素数时,模 p p p剩余类集合对于剩余类加法和乘法构成一个域,记为 G F ( p ) GF(p) GF(p)。
从群的角度出发,则一个集合 F F F是一个域应该满足以下3个条件:
- (1) 构成加法交换群;
- (2) 非零元构成乘法交换群;
- (3) 满足分配律。
从域、除环、无零因子环和环的定义,可以知道域一定是除环,除环一定是无零因子环。
4.2 环的同态与理想
定义4.6:
(
R
,
+
,
⋅
)
(R, +, ·)
(R,+,⋅)和
(
R
′
,
⊕
,
⊗
)
(R^{'},\oplus, \otimes)
(R′,⊕,⊗)是两个环,如果存在
R
R
R到
R
′
R^{'}
R′的一个映射
f
f
f,加法和乘法都在
f
f
f 下得到保持,即对任意
f
(
a
b
)
=
f
(
a
)
f
(
b
)
f(ab)=f(a)f(b)
f(ab)=f(a)f(b)
f
(
a
+
b
)
=
f
(
a
)
+
f
(
b
)
f(a+b)=f(a)+f(b)
f(a+b)=f(a)+f(b)
则称 f f f是 R R R到 R ′ R^{'} R′同态映射,或简称同态。如果 f f f 是单射,则称为 f f f是单同态。如果 f f f 是满射,则称为 f f f是满同态。如果 f f f 是一一映射,则称 f f f 是同构(映射),此时称 ( R , + , ⋅ ) (R, +, ·) (R,+,⋅)和 ( R ′ , ⊕ , ⊗ ) (R^{'},\oplus, \otimes) (R′,⊕,⊗)是同构,并用 R ≅ R ′ R\cong R^{'} R≅R′表示。
- 第四章小结:(1) 整环与除环的区别:除环少了交换性,增加了乘法群。相同处:都有单位元,都是无零因子环;不同处:前者可以是零环,而后者不行;(2) 整环的优点(可换性)与除环的优点(可逆性)凑合在一起,就成了——域;(3) 集合F是一个域需要满足三个条件:构成加法交换群、非零元构成乘法交换群和满足分配律;(4)域一定是除环,除环包含了域。
五、多项式环与有限域
5.1 多项式环
定义5.1:设
F
F
F是一个域,设
a
≠
0
a\neq 0
a=0。则称
f
(
x
)
=
a
n
x
n
+
a
n
−
1
x
n
−
1
+
.
.
.
+
a
1
x
+
a
0
(
a
i
∈
F
,
n
是非负整数
)
f(x)=a_{n}x^{n}+a_{n-1}x^{n-1}+...+a_{1}x+a_{0}(a_{i}\in F, n是非负整数)
f(x)=anxn+an−1xn−1+...+a1x+a0(ai∈F,n是非负整数)
- (1) f ( x ) f(x) f(x)是 F F F上的一元 n n n次多项式,其中 x x x是一个未定元。
- (2) 称 a n x n a_{n}x^{n} anxn为 f ( x ) f(x) f(x)的首项, n n n是多项式 f ( x ) f(x) f(x)的次数,记为 d e g ( f ( x ) ) = n deg(f(x))=n deg(f(x))=n。
- (3) 如果 a n = 1 a_{n}=1 an=1,则称 f ( x ) f(x) f(x)为首一多项式。
- (4) 如果 f ( x ) = a n ≠ 0 f(x)=a_{n}\neq 0 f(x)=an=0,则约定 d e g ( f ( x ) ) = 0 deg(f(x))=0 deg(f(x))=0,为零次多项式。
- (5) F F F上的全体一元多项式的集合用 F ( x ) F(x) F(x)表示。
- (6) 当 a i a_{i} ai全为 0 0 0时,即 f ( x ) = 0 f(x)=0 f(x)=0,称为零多项式。
域 G F ( 2 ) GF(2) GF(2)上的两个多项式 ( G F ( 2 ) (GF(2) (GF(2)的两个元素表示为 0 0 0和 1 1 1)
定理5.1: F [ x ] F[x] F[x]是具有单位元的整环。
定义5.2:对于 f ( x ) 、 g ( x ) ∈ F [ x ] f(x)、g(x)\in F[x] f(x)、g(x)∈F[x], f ( x ) ≠ 0 f(x)\neq 0 f(x)=0。如果存在 q ( x ) ∈ F [ X ] q(x)\in F[X] q(x)∈F[X],使得 g ( x ) = q ( x ) f ( x ) g(x)=q(x)f(x) g(x)=q(x)f(x),则称 f ( x ) f(x) f(x)整除 g ( x ) g(x) g(x),记为 f ( x ) ∣ g ( x ) f(x)|g(x) f(x)∣g(x), f ( x ) f(x) f(x)称为 g ( x ) g(x) g(x)的因式。如果 ( f ( x ) ) k ∣ g ( x ) (f(x))^{k}|g(x) (f(x))k∣g(x),但 ( f ( x ) ) k + 1 ∣ g ( x ) (f(x))^{k+1}|g(x) (f(x))k+1∣g(x)不能整除g(x),则称 f ( x ) f(x) f(x)是 g ( x ) g(x) g(x)的 k k k重因式。
定理5.2:欧几里得算法。对于多项式
f
(
x
)
、
g
(
x
)
f(x)、g(x)
f(x)、g(x),其中
d
e
g
(
f
(
x
)
)
⩽
d
e
g
(
g
(
x
)
)
deg(f(x))\leqslant deg(g(x))
deg(f(x))⩽deg(g(x))。反复进行欧几里得算法,得到下列方程式:
g
(
x
)
=
q
1
(
x
)
f
(
x
)
+
r
1
(
x
)
,
d
e
g
(
r
1
(
x
)
)
<
d
e
g
(
f
(
x
)
)
g(x)=q_{1}(x)f(x)+r_{1}(x), deg(r_{1}(x))<deg(f(x))
g(x)=q1(x)f(x)+r1(x),deg(r1(x))<deg(f(x))
f
(
x
)
=
q
2
(
x
)
r
1
(
x
)
+
r
2
(
x
)
,
d
e
g
(
r
2
(
x
)
)
<
d
e
g
(
r
1
(
x
)
)
f(x)=q_{2}(x)r_{1}(x)+r_{2}(x), deg(r_{2}(x))<deg(r_{1}(x))
f(x)=q2(x)r1(x)+r2(x),deg(r2(x))<deg(r1(x))
r
1
(
x
)
=
q
3
(
x
)
r
2
(
x
)
+
r
3
(
x
)
,
d
e
g
(
r
3
(
x
)
)
<
d
e
g
(
r
2
(
x
)
)
r_{1}(x)=q_{3}(x)r_{2}(x)+r_{3}(x), deg(r_{3}(x))<deg(r_{2}(x))
r1(x)=q3(x)r2(x)+r3(x),deg(r3(x))<deg(r2(x))
…
r
m
−
2
(
x
)
=
q
m
(
x
)
r
m
−
1
(
x
)
+
r
m
(
x
)
,
d
e
g
(
r
m
(
x
)
)
<
d
e
g
(
r
m
−
1
(
x
)
)
r_{m-2}(x)=q_{m}(x)r_{m-1}(x)+r_{m}(x), deg(r_{m}(x))<deg(r_{m-1}(x))
rm−2(x)=qm(x)rm−1(x)+rm(x),deg(rm(x))<deg(rm−1(x))
r
m
−
1
(
x
)
=
q
m
+
1
(
x
)
r
m
(
x
)
+
r
3
(
x
)
r_{m-1}(x)=q_{m+1}(x)r_{m}(x)+r_{3}(x)
rm−1(x)=qm+1(x)rm(x)+r3(x)于是有
r
m
(
x
)
=
(
f
(
x
)
,
g
(
x
)
)
r_{m}(x)=(f(x),g(x))
rm(x)=(f(x),g(x))
定义5.3:设
p
(
x
)
∈
F
[
x
]
p(x)\in F[x]
p(x)∈F[x]为一多项式,且
d
e
g
(
p
(
x
)
)
≥
1
deg(p(x))\geq 1
deg(p(x))≥1,如果
p
(
x
)
p(x)
p(x)在
F
[
x
]
F[x]
F[x]内的因式仅有零次多项式及
c
p
(
x
)
(
c
≠
0
∈
F
)
cp(x)(c\neq 0 \in F)
cp(x)(c=0∈F) ,则称
p
(
x
)
p(x)
p(x)是
F
[
x
]
F[x]
F[x]内的一个不可约多项式,否则称为可约多项式。
G F ( 2 ) [ x ] GF(2)[x] GF(2)[x](二元域上,判断一次因式,只需把 0 0 0和 1 1 1代入,判断是否为 0 0 0,为 0 0 0则为可约,不为 0 0 0不可约)四次以内的不可约多项式。
- (1) 0次,多项式为1;
- (2) 1次,多项式为 x , x + 1 x, x+1 x,x+1;
- (3) 2次,多项式为 x 2 + x + 1 x^{2}+x+1 x2+x+1;
- (4) 3次,多项式为 x 3 + x 2 + 1 , x 3 + x + 1 x^{3}+x^{2}+1, x^{3}+x+1 x3+x2+1,x3+x+1;
- (5) 4次,多项式为 x 4 + x + 1 , x 4 + x 3 + 1 , x 4 + x 3 + x 2 + x + 1 x^{4}+x+1, x^{4}+x^{3}+1, x^{4}+x^{3}+x^{2}+x+1 x4+x+1,x4+x3+1,x4+x3+x2+x+1;
在 G F ( 2 ) [ x ] GF(2)[x] GF(2)[x]上有 ( f ( x ) + g ( x ) ) 2 = ( f ( x ) ) 2 + ( g ( x ) ) 2 (f(x)+g(x))^{2}=(f(x))^{2}+(g(x))^{2} (f(x)+g(x))2=(f(x))2+(g(x))2
5.2 多项式剩余类环
定义5.4:设
f
(
x
)
∈
F
[
x
]
f(x)\in F[x]
f(x)∈F[x]是首一多项式。对于
a
(
x
)
、
b
(
x
)
∈
F
[
x
]
a(x)、b(x)\in F[x]
a(x)、b(x)∈F[x],如果
f
(
x
)
f(x)
f(x)除
a
(
x
)
、
b
(
x
)
a(x)、b(x)
a(x)、b(x) 得相同的余式,即
a
(
x
)
=
q
1
(
x
)
f
(
x
)
+
r
(
x
)
a(x)=q_{1}(x)f(x)+r(x)
a(x)=q1(x)f(x)+r(x)
b
(
x
)
=
q
2
(
x
)
f
(
x
)
+
r
(
x
)
b(x)=q_{2}(x)f(x)+r(x)
b(x)=q2(x)f(x)+r(x)
则称
a
(
x
)
a(x)
a(x)和
b
(
x
)
b(x)
b(x)关于
f
(
x
)
f(x)
f(x)模同余,记为
a
(
x
)
≡
b
(
x
)
(
m
o
d
f
(
x
)
)
a(x)\equiv b(x)\pmod {f(x)}
a(x)≡b(x)(modf(x))
定理5.3:设
f
(
x
)
∈
F
[
x
]
f(x)\in F[x]
f(x)∈F[x]是一个首一多项式,且
d
e
g
(
f
(
x
)
)
>
0
deg(f(x))>0
deg(f(x))>0,则
F
[
x
]
(
m
o
d
f
(
x
)
)
F[x]\pmod {f(x)}
F[x](modf(x))构成具有单位元的交换环,称为多项式剩余类环。
定理5.4:如果 f ( x ) f(x) f(x)是 F F F上的首一不可约多项式,则 F [ x ] ( m o d f ) ( x ) F[x]\pmod f(x) F[x](modf)(x)构成有限域。
5.3 有限域
定义5.5:有限个元素构成的域称为有限域或 G a l o i s Galois Galois(伽罗瓦)域。域中元素的个数称为有限域的阶。
- 例:当
p
p
p是素数时,模
p
p
p剩余类集合
{ 0 ‾ , 1 ‾ , 2 ‾ , . . . , p − 1 ‾ } \lbrace \overline{0}, \overline{1},\overline{2}, ..., \overline{p-1} \rbrace {0,1,2,...,p−1}
构成 p p p阶有限域 G F ( p ) GF(p) GF(p)。
定义5.6: q q q阶有限域中阶为 q − 1 q-1 q−1的元素称为本原域元素,简称本原元。
定理5.5:有限域中一定含有本原元。在一个无零因子环 R R R里所有非零元的加法阶都相同。当加法阶有限时,它是一个素数。
定义5.7:域中非零元的加法阶称为环的特征,当加法阶为无限大时,称特征为 0 0 0。如果一个域F不再含有真子集作为 F F F的子域,则称 F F F为素域。
定理5.6:阶为素数的有限域必为素域。
- (1) 素数 p p p阶域的特征为 p p p。
- (2) 任何素数 p p p阶域与 G F ( 2 ) GF(2) GF(2)同构。
定理5.7:有限域的阶必为其特征之幂。一般有限域记为 G F ( p m ) GF(p^{m}) GF(pm),其中 p p p是域的特征, m m m是正整数。由于特征总是素数,则有限域的阶总为素数的幂。
- 第五章小结:(1)要注意零次多项式是只有常数项的多项式,零多项式是等于0;(2) 欧几里得和不可约多项式非常重要,需要多加深理解;(3)有限域则是必须掌握的知识点。
六、同余式
6.1 剩余系
回顾剩余类:设
m
m
m是正整数,模
m
m
m同余的全体整数是一个模
m
m
m剩余类,即可表示为
a
=
q
m
+
r
,
0
⩽
r
<
m
,
q
=
0
,
±
1
,
±
2
,
.
.
.
a=qm+r,0\leqslant r<m,q=0,\pm 1, \pm2,...
a=qm+r,0⩽r<m,q=0,±1,±2,...
的整数是一个模 m m m为一类,称为剩余类,剩余类中的每个数都称为该类的剩余或代表, r r r称为该类的最小非负剩余。
定义6.1:从模 m m m剩余类中各取一个代表,则称这些代表的集合为模 m m m的一个完全剩余系。
定义6.2:如果一个模 m m m的剩余类里面的数与m互素,则称它为与模 m m m互素的剩余类。从与模 m m m互素的每个剩余类中各取一个数构成的集合称为模 m m m的一个简化剩余系。
定理6.1:模 m m m剩余类环中与 m m m互素的剩余类构成乘法群。
欧拉函数 φ ( m ) \varphi (m) φ(m)表示小于或等于 m m m的正整数中与 m m m互质的数的数量。例如 φ ( 8 ) = 4 \varphi (8)=4 φ(8)=4 ,因为 1 、 3 、 5 、 7 1、3、5、7 1、3、5、7均和 8 8 8互质(互素)。当 m m m为质数时 φ ( m ) = m − 1 \varphi (m)=m-1 φ(m)=m−1 ,以及 φ ( p k ) = p k ( 1 − 1 p ) \varphi (p^{k})=p^{k}(1-\frac 1p) φ(pk)=pk(1−p1)。
(欧拉定理):设
m
m
m是正整数,如果
(
r
,
m
)
=
1
(r,m)=1
(r,m)=1 ,则
r
φ
(
m
)
≡
1
(
m
o
d
m
)
r^{\varphi (m)} \equiv 1\pmod m
rφ(m)≡1(modm)
(费马定理):如果
p
p
p是素数,则
r
p
≡
r
(
m
o
d
p
)
r^{p} \equiv r\pmod p
rp≡r(modp)
6.2 中国剩余定理
通常中国剩余定理是求解同余式组的解,例
x
≡
b
1
(
m
o
d
m
)
1
x\equiv b_{1}\pmod m_{1}
x≡b1(modm)1
x
≡
b
2
(
m
o
d
m
)
2
x\equiv b_{2}\pmod m_{2}
x≡b2(modm)2
⋮
\vdots
⋮
x
≡
b
k
(
m
o
d
m
)
k
x\equiv b_{k}\pmod m_{k}
x≡bk(modm)k
(中国剩余定理):设
m
1
,
m
2
,
…
,
m
k
m_{1} , m_{2}, \ldots, m_{k}
m1,m2,…,mk两两互素,则上面的同余式组有唯一解。
x
≡
M
1
−
1
M
1
b
1
+
M
2
−
1
M
2
b
2
+
⋮
+
M
k
−
1
M
k
b
k
(
m
o
d
m
)
x\equiv M_1^{-1}M_1b_1+M_2^{-1}M_2b_2+\vdots +M_k^{-1}M_kb_k\pmod m
x≡M1−1M1b1+M2−1M2b2+⋮+Mk−1Mkbk(modm)
其中
m
=
m
1
m
2
…
m
k
m=m_1m_2\ldots m_k
m=m1m2…mk,
M
1
=
m
m
i
M_1=\frac mm_i
M1=mmi,
M
1
−
1
M
1
≡
1
(
m
o
d
m
i
)
M_1^{-1}M_1\equiv 1\pmod {m_i}
M1−1M1≡1(modmi),
i
=
1
,
2
,
.
.
.
,
k
i=1,2,...,k
i=1,2,...,k。
- 例:求解以下同余式组的解
x ≡ 2 ( m o d 3 ) x\equiv 2\pmod 3 x≡2(mod3)
x ≡ 3 ( m o d 5 ) x\equiv 3\pmod 5 x≡3(mod5)
x ≡ 2 ( m o d 7 ) x\equiv 2\pmod 7 x≡2(mod7)
解答过程如下:
m 1 = 3 , m 2 = 5 , m 3 = 7 , m = 3 × 5 × 7 = 105 m_1=3, m_2=5, m_3=7, m=3\times 5\times7=105 m1=3,m2=5,m3=7,m=3×5×7=105
M 1 = 5 × 7 = 35 , M 1 − 1 = 2 ( m o d 3 ) M_1=5\times 7=35, M_1^{-1}=2\pmod 3 M1=5×7=35,M1−1=2(mod3)
M 2 = 3 × 7 = 21 , M 2 − 1 = 1 ( m o d 5 ) M_2=3\times 7=21, M_2^{-1}=1\pmod 5 M2=3×7=21,M2−1=1(mod5)
M 3 = 3 × 5 = 15 , M 3 − 1 = 1 ( m o d 7 ) M_3=3\times 5=15, M_3^{-1}=1\pmod 7 M3=3×5=15,M3−1=1(mod7)
x ≡ M 1 − 1 M 1 b 1 + M 2 − 1 M 2 b 2 + M 3 − 1 M 3 b 3 ≡ 2 × 35 × 2 + 1 × 21 × 3 + 1 × 15 × 2 ≡ 23 ( m o d 15 ) x\equiv M_1^{-1}M_1b_1+M_2^{-1}M_2b_2+M_3^{-1}M_3b_3\equiv 2\times35\times2+1\times21\times3+1\times 15\times2\equiv 23\pmod {15} x≡M1−1M1b1+M2−1M2b2+M3−1M3b3≡2×35×2+1×21×3+1×15×2≡23(mod15) - 第六章小结:相同剩余的一个剩余类中有一个元素与 m m m互素,则其中所有元素都与 m m m互素。
七、平方剩余
定义7.1:设 p p p是奇素数,即大于2的素数,如果二次同余式
有解,则 a a a称为模 p p p的平方剩余,否则 a a a称为模 p p p的平方非剩余。有些也将平方剩余和平方非剩余分别称为二次剩余和二次非剩余。
- 例:求出
p
=
5
、
7
p=5、7
p=5、7时的平方剩余和平方非剩余。
解: p = 5 p=5 p=5时,由于
1 2 ≡ 1 ( m o d 5 ) 1^{2}\equiv 1\pmod 5 12≡1(mod5)
2 2 ≡ 4 ( m o d 5 ) 2^{2}\equiv 4\pmod 5 22≡4(mod5)
3 2 ≡ 4 ( m o d 5 ) 3^{2}\equiv 4\pmod 5 32≡4(mod5)
4 2 ≡ 1 ( m o d 5 ) 4^{2}\equiv 1\pmod 5 42≡1(mod5)
所以 1 、 4 1、4 1、4是模 5 5 5的平方剩余,而 2 、 3 2、3 2、3是模 5 5 5的平方非剩余
p = 7 p=7 p=7时,由于
1 2 ≡ 1 ( m o d 7 ) 1^{2}\equiv 1\pmod 7 12≡1(mod7)
2 2 ≡ 4 ( m o d 7 ) 2^{2}\equiv 4\pmod 7 22≡4(mod7)
3 2 ≡ 2 ( m o d 7 ) 3^{2}\equiv 2\pmod 7 32≡2(mod7)
4 2 ≡ 2 ( m o d 7 ) 4^{2}\equiv 2\pmod 7 42≡2(mod7)
5 2 ≡ 4 ( m o d 7 ) 5^{2}\equiv 4\pmod 7 52≡4(mod7)
6 2 ≡ 1 ( m o d 7 ) 6^{2}\equiv 1\pmod 7 62≡1(mod7)
所以 1 、 2 、 4 1、2、4 1、2、4是模 7 7 7的平方剩余,而 3 、 5 、 6 3、5、6 3、5、6是模 7 7 7的平方非剩余。
定理7.1:设 p p p是奇素数。在模 p p p的简化剩余系中,有 p − 1 2 \frac {p-1}2 2p−1个平方剩余, p − 1 2 \frac {p-1}2 2p−1个平方非剩余。
(欧拉判别式):设
p
p
p是奇素数,
(
a
,
p
)
=
1
(a, p)=1
(a,p)=1 。
a
a
a是模
p
p
p平方剩余的充分必要条件是
a
p
−
1
2
≡
1
(
m
o
d
p
)
a^{\frac {p-1}2}\equiv 1\pmod p
a2p−1≡1(modp)
a
a
a是模
p
p
p平方非剩余的充分必要条件是
a
p
−
1
2
≡
−
1
(
m
o
d
p
)
a^{\frac {p-1}2}\equiv -1\pmod p
a2p−1≡−1(modp)
7.1 勒让德符号
由于在模乘法的计算过程中需要反复的模乘运算,上节平方剩余与平方非剩余的欧拉判别法当 p p p比较大时并不方便,例如判别286在模563下是否是平方剩余,计算量非常大。而勒让德符号判别是否是平方剩余是非常有效。
定义7.2:设
p
p
p是奇素数 ,
a
a
a是整数。勒让德(Legendre)符号(
a
p
\frac ap
pa)定义如下:
(
a
p
)
=
{
1
,
a
是模
p
的平方剩余
−
1
,
a
是模
p
的非平方剩余
0
,
a
能够被
p
整除,即
p
∣
a
( \frac ap)= \begin{cases} 1, & \text{$a$是模$p$的平方剩余} \\ -1, & \text{$a$是模$p$的非平方剩余}\\ 0, & \text{$a$能够被$p$整除,即$p|a$} \end{cases}
(pa)=⎩
⎨
⎧1,−1,0,a是模p的平方剩余a是模p的非平方剩余a能够被p整除,即p∣a
定理7.2:设
p
p
p是奇素数,
a
a
a是整数,则
(
a
p
)
=
a
p
−
1
2
(
m
o
d
p
)
(\frac ap)=a^{\frac {p-1}2}\pmod p
(pa)=a2p−1(modp)
勒让德符号具有下列性质:
- (1) ( 1 p ) = 1 , ( − 1 p ) = ( − 1 ) p − 1 2 (\frac 1p)=1, (\frac {-1}p)=(-1)^{\frac {p-1}2} (p1)=1,(p−1)=(−1)2p−1
- (2) 如果 a ≡ b ( m o d p ) a\equiv b\pmod p a≡b(modp),则 ( a p ) = ( b p ) (\frac ap)=(\frac bp) (pa)=(pb)
- (3) ( a + p p ) = ( a p ) (\frac {a+p}p)=(\frac ap) (pa+p)=(pa)
- (4) 如果 ( a , p ) = 1 (a, p)=1 (a,p)=1,则 ( a 2 p ) = 1 (\frac {a^2}p)=1 (pa2)=1
- (5) ( a 1 a 2 . . . a n p ) = ( a 1 p ) ( a 2 p ) . . . ( a n p ) (\frac {a_1a_2...a_n}p)=(\frac {a_1}p)(\frac {a_2}p)...(\frac {a_n}p) (pa1a2...an)=(pa1)(pa2)...(pan)
定理7.3:(二次互反律)如果 p 、 q p、q p、q都是奇素数, ( p , q ) = 1 (p, q)=1 (p,q)=1 ,则 ( q p ) = ( − 1 ) p − 1 2 q − 1 2 ( p q ) (\frac qp)=(-1)^{\frac {p-1}2\frac {q-1}2}(\frac pq) (pq)=(−1)2p−12q−1(qp)
- 第七章小结:使用勒让德符号的计算过程中,一定要注意 p p p是奇素数。
八、总结
基本概念比较多,而且特别多的定义和定理,需要先记住慢慢理解,并结合书本上的证明加深理解。