基于matlab的传统算法图像去噪的实现原理

本文探讨了图像去噪的原理和方法,包括PSNR和SSIM的评估指标,介绍了噪声的来源和分类,并详细讲解了空间域滤波(均值、中值、高斯滤波)、维纳滤波、小波滤波和非均值局部滤波(NL-means)等技术。同时,提供了基于MATLAB的图像去噪程序链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目要求:图像去噪

      下面是一幅噪声图像,请设计图像去噪方案,计算去噪图像与原始图像的PSNR(峰值信噪比)、SSIM(结构相似性)指标。

PSNR(峰值信噪比):是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。(PSNR的单位是dB,数值越大表示失真越小。)

SSIM(结构相似性):是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。(SSIM取值范围[0,1],值越大,表示图像失真越小。)

1.什么是图像噪声

图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。 图像中各种妨碍人们对其信息接受的因素即可称为图像噪声 。噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”(图像噪声可以描述成不同的类型,其归类方法就是基于统计方法的)。因此将图像噪声看成是多维随机过程是合适的,因而描述噪声的方法完全可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。通俗的说就是噪声让图像不清楚。

2. 图像噪声来源

a、图像获取过程中

图像传感器CCD和CMOS采集图像过程中受传感器材料属性、工作环境、电子元器件和电路结构等影响,会引入各种噪声。

b、图像信号传输过程中

传输介质和记录设备等的不完善,数字图像在其传输记录过程中往往会受到多种噪声的污染。

3. 噪声分类

噪声按照不同的分类标准可以有不同的分类形式:

  • 基于产生原因:内部噪声,外部噪声。
  • 基于噪声与信号的关系

加性噪声:加性噪声和图像信号强度是不相关的,这类带有噪声的图像g可看成为理想无噪声图像f与噪声n之和:

                                                                             g = f + n;

乘性嗓声:乘性噪声和图像信号是相关的,往往随图像信号的变化而变化,载送每一个象素信息的载体的变化而产生的噪声受信息本身调制。在某些情况下,如信号变化很小,噪声也不大。为了分析处理方便,常常将乘性噪声近似认为是加性噪声,而且总是假定信号和噪声是互相统计独立。

                                                                               g = f + f*n

  • 按照基于统计后的概率密度函数

是比较重要的,主要因为引入数学模型这就有助于运用数学手段去除噪声。在不同场景下噪声的施加方式都不同,由于在外界的某种条件下,噪声下图像-原图像(没有噪声时)的概率密度函数(统计结果)服从某种分布函数,那么就把它归类为相应的噪声。下面将具体说明基于统计后的概率密度函数的噪声分类及其消除方式。

4.图像去噪算法的分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值