自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(227)
  • 资源 (11)
  • 收藏
  • 关注

原创 计算机专业毕设项目2000套——源码文档齐全(ASP/C/Java/JSP/PHP/VB/Android/Python/小程序)

各位还在读计算机专业的同学们,是否还在为毕业设计而烦恼?别担心,小编为大家整理了一份超全的2000套计算机专业毕设项目代码资料合集,涵盖多种方向与不同难度,总能找到适合你的那一款!关注小编,文末免费领取~~~https://mp.weixin.qq.com/s/hGNao727Apt6Uk54djx_Iw项目无需付费,无需解压密码,下载解压即得!!!ASP/C/Java/JSP/PHP/VB/Android/Python/小程序数量庞大:足足 1900 套项目代码,从入门级到进阶级一应俱全。方向齐全:涵盖

2025-10-04 14:44:38 296

原创 千套微信小程序源码分享——带后台和不带后台都有,款式多样,满足不同行业需求

关注小编,文末免费领取~~~千套微信小程序源码项目都带有ui截图,拿来学习或者修改之后直接应用都可以!!!注:以上收集内容来源于互联网,均为免费资源,请勿相信里面出现的链接以及二维码,以防上当受骗。①下载微信开发者工具https://developers.weixin.qq.com/miniprogram/dev/devtools/download.html②导入项目,点击运行小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、s

2025-10-04 14:42:51 329

原创 MATLAB时间序列预测:基于CNN-循环网络-注意力机制的时间序列分析

随着工业生产、金融市场、能源消耗、交通流量等领域产生大量时间序列数据,如何高精度预测未来趋势成为热门研究方向。传统时间序列预测方法(如ARIMA、SVR)在处理高维非线性和长依赖问题时往往效果有限。和。这三种模型通过卷积神经网络(CNN)提取局部时序特征,结合循环神经网络(RNN)(包括LSTM、BiLSTM、GRU)捕获长时依赖,再利用注意力机制(Attention)对不同时间步的特征进行加权,提升预测精度和可解释性。

2025-10-04 14:39:25 1175

原创 Matlab数学建模——优化算法研究:在复杂函数空间中寻找最优解

考虑一个以平面坐标(x,y)为自变量的二维函数,其核心结构由欧几里得距离与正弦函数以及指数函数共同构成:该函数以 (50,50)为对称中心,具有以下特征:径向对称性:函数值仅依赖于点到中心的距离。波动性:由于正弦函数的引入,函数表面呈现周期性的起伏。非凸性:存在多个局部极小值,增加了寻找全局最优解的难度。建立同异反联系数局部极小值陷阱:传统算法容易收敛到某个局部低点。计算各个评价指标的综合权重初始点敏感性:不同的起点可能导致算法收敛到完全不同的解。搜索效率与精度的平衡:全局探索需要更多迭代,但计算成本会显著

2025-10-04 14:36:32 365

原创 Python图像处理——基于YOLOv12的轴承缺陷实时检测系统(Pyqt5界面)

数据集包含1085张轴承缺陷数据集,包括['凹槽','凹陷','擦伤','划痕']4类。YOLOv12《Attention-Centric Real-Time Object Detectors》首次彻底摆脱传统CNN约束,将注意力机制直接融入目标检测核心设计。区域注意力 (Area Attention):将特征图划分为等区域(默认4块),在保持大感受野的同时,将自注意力计算复杂度降低约50%。残差高效层聚合网络 (R-ELAN)

2025-09-20 10:34:36 784

原创 Python图像处理——基于改进U-Net网络的裂缝分割检测实现

基于门控注意力改进的U-Net网络进行的裂缝分割检测。

2025-09-20 10:32:18 1141

原创 Word中目录页码无横线且内容页有横线的设置办法

直接设置内容页页码为无横线格式(即阿拉伯数字1,2,3...),接下来更新目录(可以全部更新也可以只更新页码,但全部更新需要重新修改目录格式,推荐只更新页码),再进入页眉页脚模式,对处于阿拉伯数字的内容页页码左右自行添加左右横线(注:不是去修改页码格式,直接添加横线即可)缺点:在论文格式审查时 页码格式会报错,并且word转pdf时,目录会自动加横线推荐!!!!直接设置内容页页码为无横线格式(即阿拉伯数字1,2,3...),接下来更新目录,用只更新页码的方式。同时按下 Ctrl + F11 组合键锁定目录所

2025-09-20 10:30:08 332

原创 Matlab智能算法——基于遗传算法 (Genetic Algorithm, GA) 的选址优化问题

在一个 7×7 的地图区域(每个格子里有“人口/需求量”),要寻找一个最优的位置建一个“设施”(比如医院、仓库、商场),使得所有居民到该设施的加权距离和最小。特殊的是:地图中间可能有“河流”,需要通过“桥”才能跨过去,所以计算距离时要分情况。2. 染色体编码 每个个体是一个 6 位的二进制串,前 3 位解码成 X,后 3 位解码成 Y。这样就能表示 0.5 到 7.5 范围内的坐标(格子中心点)。所以种群就是若干个“候选设施选址”。选择 (selection):轮盘赌,适应度高的更容易

2025-09-20 10:28:47 269

原创 Matlab通信信号处理——空间调制SM和广义空间调制GSM系统仿真

在多输入多输出(MIMO)系统中,空间调制(SM, Spatial Modulation)和广义空间调制(GSM, Generalized Spatial Modulation)是一类新颖的调制方式。它们不仅利用 星座符号(如 QPSK) 传递信息,还通过 发射天线的索引 携带额外比特信息,从而提升提高了频谱效率和系统性能。基本思想:不仅通过星座符号(如 QPSK、QAM)传输信息,还通过选择发射天线的索引来承载比特信息。优点:避免天线间干扰(每时刻只激活一根天线)。接收机复杂度较低。系统参数:发射天线数

2025-09-20 10:25:55 260

原创 Matlab数字信号处理——声域分析与均衡系统GUI

基于Matlab分析wav声音文件频谱与声音的关系。通过采集一段声音进行频谱分析等处理,然后设计数字滤波器处理这个原始声音的wav文件,并比较滤波以后输出声音信号与原声音信号的异同。完成混响器和均衡器的设计。通过声卡录制自己或别人的一段声音,做频域分析,得出声音的频域范围,并设计均衡器,对声音的高低音进行调音处理,使得声音更加美妙,并通过喇叭回放验证。·获取一段音乐或语音信号,设计单回声滤波器,实现信号的单回声产生。给出单回声滤波器的单位脉冲响应及幅频特性,给出加入单回声前后的信号频谱。·设计多重回声滤波器

2025-09-20 10:24:22 236

原创 Python图像处理——基于YOLOv12的课堂行为实时检测系统(Pyqt5界面)

训练集1825张,验证集203张。类别包含leaning over the table(趴在桌子上)、bowing the head(低头)、using phone(使用手机)、writing(书写)、reading(阅读)、hand-raising(举手)六类行为。数据集格式为yolo格式的txt文件。

2025-09-20 10:22:51 449

原创 Matlab数学建模——基于GSPA-IAHP的风险评价模型

综合运用区间层次分析法和广义集对分析法两种评价方法理论,建立了GSPA-IAHP风险评价模型。从B1、B2、B3、B4四个方面对A进行了风险分析和评价,对A主要的十三个风险C1-C13的评价指标重要度进行了排序,评价结果可知,该评价模型的计算过程简单、实用,体现了该方法的适用性,为类似项目的风险评价提供了参考价值,具有广泛的发展和应用。建立多层次分析结果模型建立区间判断矩阵计算各个指标评价的区间权重建立同异反联系数计算各个评价指标的综合权重基于IAHP来计算各个评价指标的区间权重 ①读取区间数

2025-09-20 10:21:06 255

原创 Matlab数学建模——MATLAB语言常用算法程序集14类(无套路获取)

随机数生成:介绍了MATLAB中生成随机数的各种方法,包括基本随机数生成器的使用,以及如何生成符合特定分布(如正态分布、均匀分布等)的随机数。偏微分方程的数值解法:本书介绍了偏微分方程的数值解法,包括有限差分法、有限元法等。常微分方程的初值问题:讲述了求解常微分方程初值问题的数值方法,如欧拉法、龙格-库塔法等。函数逼近:阐述了如何用特定类型的函数来逼近给定的复杂函数,如多项式逼近和傅里叶逼近。解线性方程组的直接法:介绍了求解线性方程组的直接法,包括高斯消元法和LU分解等。

2025-09-20 09:25:37 400

原创 Matlab数字图像处理——基于BP神经网络的验证码识别系统

支持 单张图片标注 与 批量图片标注。在数据准备阶段,首先利用 列投影法 对验证码进行字符分割,逐一提取单个字符。随后,用户人工输入真实字符(A-Z,0-9),从而生成训练数据集。在 特征提取 环节,每个字符图像被归一化至 32×32 尺寸,再按 2×2 小块统计黑点数,最终得到 256维特征向量。对应的标签采用 36维独热编码(26个大写字母 + 10个数字)。所有生成的数据都会保存到一个 文件中,每次新增标注的图片会自动追加到该文件中。BP神经网络包括输入层、隐藏层和输出层,训练结束后会保存模型。具体

2025-09-20 09:23:43 307

原创 Matlab数字信号处理——基于MFCC和KNN的EEG脑电信号情绪识别

信号处理、通信仿真、算法设计、matlabappdesigner,gui设计、simulink仿真......希望能帮到你!

2025-09-20 09:19:33 346

原创 Matlab数字信号处理——心电图模拟生成GUI,模拟心电信号生成器

在数字信号处理与医学工程研究中,心电图(ECG, Electrocardiogram)的分析与仿真具有重要意义。心电信号不仅能反映心脏的生理状态,还为临床诊断提供了核心依据。本文将基于 Matlab GUI 设计一个“心电图模拟生成器”,实现心电波形的随机参数生成、可视化显示以及带噪心电信号的输出。(1)心电图波形的构成心电信号主要由 P 波、QRS 波群、T 波和U 波 组成:P 波:反映心房去极化过程。Q 波、R 波、S 波(QRS 波群):反映心室去极化,是心电图中最显著的特征。T 波:反映心室复极化

2025-08-17 14:41:02 699

原创 Matlab数字图像处理——基于BM4D压缩感知的三维图像信号重构算法

压缩感知(Compressed Sensing, CS) 以其“用更少的采样恢复原信号”的特性,被广泛应用于图像、视频、医学成像等领域。然而,在压缩感知重构过程中,噪声、纹理细节丢失以及重构速度等问题依然存在。本章实现了一种结合 BM4D(Block-Matching 4D filtering) 的非局部相似性压缩感知重构算法。如果信号在某一变换域是稀疏的,就可以用少量随机测量来重构完整信号。非局部相似性(Nonlocal Similarity) 的核心思想是:自然信号中存在大量相似的结构,即便它们在空间位

2025-08-17 14:39:45 455

原创 Matlab数字信号处理——基于最小均方误差(MMSE)估计的自适应脉冲压缩算法复现

一种基于最小均方误差(MMSE)估计的自适应脉冲压缩(APC)方法,用于雷达、超声、医学成像和地震勘测等主动传感领域的高分辨率目标探测。传统匹配滤波器虽然在单点目标+噪声情况下可获得最优信噪比(SNR),但会产生旁瓣,当存在强目标时会掩盖附近的弱目标(即掩蔽效应)。现有的失配滤波器或最小二乘(LS)方法只能部分缓解这个问题,而且对波形类型、窗口外强目标等敏感。算法思想:每个距离单元使用自适应滤波器,根据接收信号和先验信息迭代估计,降低强目标的旁瓣干扰。初始化阶段使用简化的 MMSE 滤波器(类似匹配滤波器)

2025-08-17 14:38:05 384

原创 Matlab数字信号处理——ECG心电信号处理心率计算

200 Hz 是 50 Hz 的高次谐波,可能来自医疗设备或采样系统的耦合效应。使用窄带陷波滤波器,针对 200 Hz 精准衰减,保持信号的清晰度。基线漂移会让整个波形上下移动,看似无关紧要,但它会影响自动化检测的准确性。:将信号分解为不同频带,对噪声集中的系数进行阈值处理,再重构信号,从而获得平滑而细节丰富的 ECG。实际采集时,信号会受到多种因素影响,为了获得准确的心率信息,我们必须逐步消除这些干扰。:R 波是 QRS 波群的最高峰,也是心率计算的关键点。:呼吸、体位变化或电极接触不稳引起的低频波动。

2025-08-17 14:36:32 341

原创 Matlab数字图像处理——梯度稀疏性和泊松方程求解的反光/倒影去除系统

在图像中,反光或倒影通常以高亮度、不规则纹理的形式存在,表现为突兀的边缘或亮区,与真实物体的颜色、结构不一致。这些区域不仅影响视觉观感,也容易被误判为目标区域,干扰智能系统的判断。该项目采用了一种数学图像建模结合高效数值求解的方式来处理图像反光问题。整体流程分为以下几个关键步骤:通过计算图像的梯度信息,判断各像素在水平方向和垂直方向上的强度变化。这是识别反光区域的第一步,因为反光区域往往表现为强梯度但无结构的高频分量。利用设定阈值,将那些“非结构性”的高频梯度信息削弱或者直接抑制。这一步的目的是剔除反光带来

2025-08-17 14:34:58 332

原创 Matlab课程实践——基于MATLAB设计的计算器软件(简单、科学、电工、矩阵及贷款计算)

Matlab课程实践——基于MATLAB设计的计算器软件(简单、科学、电工、矩阵及贷款计算)小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

2025-08-17 14:32:40 373

原创 Matlab数字信号处理——基于matlab的音乐播放器设计界面

appdesigner,gui设计、simulink仿真......希望能帮到你!

2025-07-16 09:59:04 259

原创 Matlab数字图像处理——基于图像分割与模板匹配的的车牌识别系统

为提取七位标准字符,系统基于列投影法对二值图像进行逐列扫描,识别字符间的空隙区域。通过对列像素分布密度的分析,识别字符边界,从而将车牌图像划分为若干独立字符单元。对于车牌首位汉字,系统考虑其相较于英数字体结构复杂、面积更大等特性,设计了宽度、面积和位置等多维度的判断准则,确保该类字符在分割阶段的正确保留。Matlab数字图像处理——基于图像分割与模板匹配的的车牌识别系统小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simul

2025-07-16 09:57:05 748

原创 Matlab数字图像处理——基于形态学的水果识别系统(可识别多种水果)

形态学操作用一些固定形状的“探测器”来清理图像中的噪声;轮廓提取在清晰的轮廓上填补内部空洞,并只保留边缘的像素。Matlab数字图像处理——基于形态学的水果识别系统(可识别多种水果)小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

2025-07-16 09:55:27 258

原创 Matlab数字信号处理——基于谱减法与LMS自适应滤波的语音增强系统设计与实现

传统谱减法谱减法通过将语音信号转换到频域,对每一帧信号的幅度谱进行减噪,保持相位不变,从而重构时域增强信号。关键步骤:帧间重叠(Overlap)+ 加窗处理(Hamming窗);FFT频域转换;估计噪声幅度谱并减去;重建频谱并IFFT回到时域;加窗归一化处理。自适应LMS谱减法谱减后的信号仍存在部分残余噪声,本文进一步引入LMS(最小均方误差)自适应滤波器,利用原始干净语音作为期望信号,调整滤波器系数最小化误差。

2025-07-16 09:54:01 298

原创 Matlab数字信号处理——基于GUI的ECG信号处理平台设计与实现

🔹 频谱分析面板🔹 信号去噪面板🔹 去噪评估面板(2)频谱分析 可以通过“读取文件”按钮加载本地 格式的 ECG 信号数据。FS(傅里叶变换)FT(连续傅里叶变换)DTFT(离散时间傅里叶变换)DFS(离散傅里叶级数)(3)去噪内置线性插值处理模块,对信号做进一步平滑,确保分析更为准确。用户可选择以下小波函数进行信号降噪:biordb4haar小波去噪可以有效剔除高频噪声,保留信号主干信息。如果信号中含有非平稳噪声,用户可以选择自适应滤波模块。系统支持输入步长因子(Step Size μ),以

2025-06-15 22:54:37 479

原创 Python数字信号处理——利用块间系数相关性的DCT域鲁棒盲图像水印(PyQT5界面)

提出了一种鲁棒透明的水印方法,利用基于块的离散余弦变换(DCT)系数修改。计算两个块的DCT系数之差,并基于水印位进行修改,以将该差调整到预定范围。阵列基函数左上角的第一个系数称为直流(DC)系数,而其余的包括交流(AC)系数。DCT系数修改的程度取决于按之字形序列排序的AC系数的DC系数和中值。在初始阶段,原始图像的每个像素值减去128,使其范围从0–255变为-128到127。然后,将图像分割成不重叠的8×8像素块,并对每个块执行离散余弦变换(DCT)。

2025-06-15 22:19:04 418

原创 Python图像处理——基于Retinex算法的低光照图像增强系统

然后,为了增强图像对比度,对每个通道的像素值范围进行缩放处理:通过统计小于0和大于0像素值的分布情况,确定每个通道的下限和上限——其中下限为像素值小于0且出现次数不超过0值像素数十分之一的最大值,上限为像素值大于0且出现次数不超过0值像素数十分之一的最小值。在此基础上,为增强图像颜色,先在通道层面对原始图像进行求和,作为归一化因子,用以生成归一化的权重矩阵,并转换至对数域以获得图像颜色增益,再将MSR结果与该颜色增益矩阵进行连乘组合,实现颜色恢复。增加一个颜色恢复模块,提升图像色彩一致性,抑制颜色失真。

2025-04-25 22:16:16 1511

原创 Matlab数字信号处理——小波阈值法去噪分析系统

本系统通过 MATLAB GUI 图形界面,集成了 小波阈值去噪算法 的各个核心模块,可以实现以下功能:打开语音文件:支持常见音频格式读取;模拟加噪:系统内置白噪声模拟功能,方便测试;小波选择:支持 和 两种小波函数;分解层数选择:可选 3 层、4 层或 5 层小波分解;阈值选取规则:minimaxi;heursure;rigrsure;sqtwolog阈值函数选择:软阈值(Soft);硬阈值(Hard);软硬折中阈值;Garrote 阈值函数小波去噪主要分为三步:小波分解:将信号分解为不同尺度下的细节

2025-04-25 22:13:14 739

原创 液体神经网络LNN-Attention创新结合——基于液体神经网络的时间序列预测(PyTorch框架)

ETT(电变压器温度):由两个小时级数据集(ETTh)和两个 15 分钟级数据集(ETTm)组成。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。traffic(交通) :描述了道路占用率。它包含 2015 年至 2016 年旧金山高速公路传感器记录的每小时数据electrity(电力):从 2012 年到 2014 年收集了 321 个客户每小时电力消耗。exchange_rate(汇率):收集了 1990 年至 2016 年 8 个国家的每日汇率。We

2025-04-25 22:11:00 2359

原创 多模态情感分析——基于多尺度自适应跨模态注意力融合(MACAF)的三模态情感分析

CMU-MOSI和CMU-MOSEI:情感标注是对每句话的7分类的情感标注,作者还提供了了2/5/7分类的标注。情绪标注是包含高兴,悲伤,生气,恐惧,厌恶,惊讶六个方面的情绪标注。在本设计中,首先采用了Transformer模块分别对文本、音频和图像特征进行特征编码,然后将通过文本在多个尺度上的特征对图像、音频进行自适应注意力交互,最后将通过交叉注意力进行特征融合。CMU-MOSI、CMU-MOSEI和CH-SIMS数据集的模态有3种(语言,视觉,声音),数据集使用的是未对齐原始raw数据特征。

2025-03-26 17:01:39 2011

原创 Python图像处理——基于YOLOv12-Paddleocr的车牌实时检测系统(Pyqt5界面)

使用的数据集是CPDD2020。训练集5769张,验证集1001张,测试集5006张。类别一类LicensePlate。数据集格式为yolo格式的txt文件。appdesigner,gui设计、simulink仿真......希望能帮到你!图形界面,实现图片、视频及摄像头检测功能,并提供检测结果的实时反馈。:支持上传视频文件,对视频逐帧进行检测,并可视化结果。上传本地图片,进行检测,并展示检测前后的对比结果。衡量检测的实时性能,FPS 越高,处理速度越快。可实时调用摄像头进行检测。

2025-03-26 16:58:03 783

原创 Python图像处理——基于YOLOv8的道路裂缝分割检测系统(Pyqt5界面)

训练集3717张,验证集200张,测试集112张。图形界面,实现图片、视频及摄像头检测功能,并提供检测结果的实时反馈。视频检测:支持上传视频文件,对视频逐帧进行裂缝检测,并可视化分割结果。图片检测:上传本地图片,自动进行裂缝分割,并展示分割前后的对比结果。FPS(每秒帧率):衡量检测的实时性能,FPS 越高,处理速度越快。总类别数:统计检测到的裂缝类别数,例如横向裂缝、纵向裂缝等。摄像头检测:可实时调用摄像头进行裂缝检测。总目标数:统计画面中检测到的裂缝总数。的道路裂缝分割检测系统,结合。

2025-03-26 16:56:57 722

原创 Python图像处理——基于CSRNet的人群密度检测系统(Pytorch框架)

使用的数据集是shanghaiTech数据集,该数据包含part_A_final和part_B_final两部分。A部分训练集300张图片,测试集182张图片;B部分训练集400张图片,测试集316张图片。A,B两部分测试集和训练集打开都包含images和ground_truth两部分。A部分从互联网上随机抓取的图像,B部分取自上海大都市繁华街道的图像。这两个子集之间的人群密度差异很大,使得人群的准确估计比大多数现有数据集更具挑战性。

2025-03-26 16:55:15 346

原创 NLP实战项目(6)——Bi-LSTM-CRF实体识别

前向的LSTM与后向的LSTM结合成BiLSTM。前向的LSTML,依次输入“我”,“爱”,“中国”得到三个向量{hL0,hL1,hL2}。最后将前向和后向的隐向量进行拼接得到{[hL0,hR2],[hL1,hR1],[hL2,hR0]},即{h0, h1, h2}。LSTM(Long_short_term_memory),使用LSTM模型可以更好的捕捉到较长距离的依赖关系,通过训练可以学到记忆那些信息和遗忘那些信息, 能解决梯度爆炸和梯度弥散问题,可以处理更长的文本数据。2、Bi-LSTM-CRF模型。

2025-03-26 16:51:19 313

原创 NLP实战项目(5)——Bi-LSTM实体识别

前向的LSTM与后向的LSTM结合成BiLSTM。前向的LSTML,依次输入“我”,“爱”,“中国”得到三个向量{hL0,hL1,hL2}。后向的LSTMR依次输入“中国”,“爱”,“我”得到三个向量{hR0,hR1,hR2}。最后将前向和后向的隐向量进行拼接得到{[hL0,hR2],[hL1,hR1],[hL2,hR0]},即{h0, h1, h2}。数据集源于论文Chinese NER using Lattice LSTM,从新浪财经上爬取,包括中国股市上市公司高级管理人员的简历。”即可获取完整源码。

2025-03-26 16:49:40 476

原创 NLP实战项目(4)——LSTM实体识别

数据集源于论文Chinese NER using Lattice LSTM,从新浪财经上爬取,包括中国股市上市公司高级管理人员的简历。CoNLL 格式(首选 BIOES 标签方案),每个字符的标签为一行。LSTM(Long_short_term_memory),使用LSTM模型可以更好的捕捉到较长距离的依赖关系,通过训练可以学到记忆那些信息和遗忘那些信息, 能解决梯度爆炸和梯度弥散问题,可以处理更长的文本数据。appdesigner,gui设计、simulink仿真......希望能帮到你!

2025-03-26 16:48:28 213

原创 NLP实战项目(3)——TextCNN结合BERT进行文本分类

其中训练集一共有 180000 条,验证集一共有 10000 条,测试集一共有 10000 条。其类别为 finance、realty、stocks、education、science、society、politics、sports、game、entertainment 十个类别。如果使用英文数据集则使用bert-base-uncased,如果是中文数据集则使用bert-base-chinese。appdesigner,gui设计、simulink仿真......希望能帮到你!进入下面公众号聊天窗口回复“

2025-03-26 16:46:49 316

原创 NLP实战项目(2)——BERT文本分类

1、数据集介绍采用了清华NLP组提供的THUCNews新闻文本分类数据集的子集。其中训练集一共有 180000 条,验证集一共有 10000 条,测试集一共有 10000 条。其类别为 finance、realty、stocks、education、science、society、politics、sports、game、entertainment 十个类别。2、BERT模型BERT是Bidirectional Encoder Representations from Transformers的缩写,是一种

2025-03-26 16:45:26 543

原创 NLP实战项目(1)——TextCNN文本分类

采用了清华NLP组提供的THUCNews新闻文本分类数据集的子集。其中训练集一共有 180000 条,验证集一共有 10000 条,测试集一共有 10000 条。其类别为 finance、realty、stocks、education、science、society、politics、sports、game、entertainment 十个类别。TextCNN 由 输入层、卷积层、池化层、全连接层组成,整体架构与计算机视觉中的 CNN 模型类似。进入下面公众号聊天窗口回复“2、TextCNN模型。

2025-03-26 16:43:40 396

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除