- 博客(168)
- 资源 (11)
- 收藏
- 关注
原创 Python图像处理——基于ResNet152的人脸识别签到系统(Pytorch框架)
将数据按照8:2分成训练集和验证集,保证模型在训练阶段和验证阶段都能得到合理的评估。选用了ResNet152模型,并根据数据集的类别数量替换了最后的分类层,以确保模型可以识别多个人脸类别。如果人脸被识别,系统将在界面右侧显示签到人的信息和签到时间。本次使用明星做为数据集,首先编写爬虫函数,根据关键字爬取对应的明星,爬取结果保存至data文件夹,并以标签名作为文件名。训练结束后,界面将显示最佳准确度,并会自动保存最佳模型权重。主界面如图所示,具体包括模型训练、摄像头开关、图片导入、签到、清空。
2024-10-26 08:27:23 521
原创 Python数字图像处理——基于SIFT特征提取的图像拼接算法(暴力匹配、knn匹配和hist匹配)
本文通过Python实现基于SIFT特征提取的图像拼接算法,包括三种匹配策略:暴力匹配、KNN(k近邻)匹配和hist直方图的特征匹配。它能够在图像中找到具有独特性和稳定性的关键点,并通过计算这些关键点的局部特征描述符来进行图像匹配。在图像拼接任务中,SIFT能够从两幅图像中提取关键点和特征描述符,然后通过匹配这些特征来寻找图像的重叠区域。③ 单应矩阵计算:利用匹配的特征点对,计算图像之间的单应矩阵,从而确定两幅图像之间的几何关系。④ 图像拼接:通过透视变换对图像进行对齐,并进行图像的无缝拼接。
2024-10-26 08:24:52 457
原创 Matlab数字图像处理——基于形态学处理的硬币计数系统(含m文件和GUI)
接着,通过形态学操作,估计并去除图像背景,从而增强硬币与背景的对比度。在这里,滤波的主要作用是去除图像中的高频噪声,而形态学操作则帮助我们进一步分离目标区域和背景区域。接下来,进行二值化,将图像转换为黑白两色,方便后续的轮廓检测。最后,通过圆形检测获得硬币的半径后,根据硬币的半径与平均值的比例,推断出不同面额的硬币个数。最终,通过累加各个硬币的面额,输出硬币的总数和总额。通过灰度化、形态学操作、滤波、二值化、边缘检测等,来识别硬币的轮廓并计算其半径。根据硬币的大小推断其面额,输出硬币的总数和总额。
2024-10-26 08:22:49 461
原创 Matlab数字信号处理——基于改进小波变换的图像去噪方法(7种去噪算法)
在传统小波去噪的基础上,结合离散余弦变换(DCT)的优势,对信号进行进一步处理,以提高去噪效果,特别适用于周期性或具有强局部特征的信号。该方法利用小波变换分离出信号中的噪声成分,并通过设置合适的阈值对小波系数进行收缩,保留主要信息的同时,去除噪声。通过引入最大熵原理,该算法在去噪过程中对信号进行最优估计,保持信号的信息量最大化,从而实现平衡信号和噪声的去除。模极大值法通过分析小波变换中信号的极大值点,提取信号的结构特征,进而有效去除噪声,并且能保留信号的边缘信息。
2024-10-26 08:20:26 641
原创 LSTM-EAAtention-Transfomer——基于有效附加注意力的时间序列预测
在自然语言处理(NLP)领域,传统的加性注意力机制通过元素乘法而非点积来捕捉令牌间的成对交互,以获取全局上下文信息。这种机制依赖于三个关键的注意力分量——查询(Q)、键(K)和值(V)——来编码输入序列中上下文信息的相关性得分。这种方法被称为有效的附加注意力,它不仅提高了推理速度,而且生成了更强大、更丰富的上下文表示。在传统的RNN中,由于梯度消失的问题,网络往往难以捕捉序列中的长期依赖关系。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。
2024-10-08 08:52:08 1367
原创 ModernTCN:用于一般时间序列分析的现代纯卷积结构
文章的ModernTCN能够获得比以往基于卷积的方法更大的ERF。Groups是群组卷积中的组数。ModernTCN,一种现代纯卷积结构,它在多个主流时间序列分析任务上取得了与最先进的基于Transformer和MLP的模型相媲美的性能,同时保持了卷积模型的效率优势。:通过使用大核心尺寸而不是堆叠更多小核心,ModernTCN显著扩大了ERF,这有助于更好地捕捉时间序列数据中的长期依赖性。借鉴了Transformer中的架构设计,ModernTCN采用了深度卷积和逐点卷积的组合,以提高模型的表示能力。
2024-10-08 08:46:48 326
原创 TCN-GRU-Transformer时间序列预测(多输入单预测)——基于tf框架
TCN用于捕捉时间序列中的长期依赖性,而GRU层则帮助模型理解序列的动态变化,注意力机制则进一步提升了模型对关键特征的关注度。TCN模块包括卷积层、批标准化层和Dropout层,并利用残差连接来保留有用的信息。注意力模块通过对序列数据进行加权处理,进一步提高了模型对时间序列中重要特征的关注度。在测试集上进行预测后,我们计算了模型的评价指标,包括R²、均方根误差(RMSE)和平均绝对误差(MAE),并将预测结果与真实值进行了可视化对比。适合各种时间序列预测时间序列预测。2.多时间步预测,单时间步预测。
2024-10-08 08:43:39 440
原创 LSTM-Transformer时间序列预测(单输入单预测)——基于Pytorch框架
在我们的模型中,我们使用了Transformer编码器来提取输入序列中的特征。Transformer的核心优势在于其自注意力机制,能够捕捉序列中不同位置之间的依赖关系。在我们的模型中,LSTM解码器负责根据Transformer编码器提取的特征进行预测。单输入单输出预测,适合风电预测,功率预测,负荷预测等等。由于Transformer本身不具备处理序列位置信息的能力,我们使用了位置编码来为每个输入数据点添加位置信息。此外,我们还绘制了预测结果与真实值的对比图,以直观展示模型的预测性能。
2024-10-08 08:40:04 988
原创 TCN-Transformer时间序列预测(多输入单预测)——基于Pytorch框架
卷积结束后,由于padding 的原因,卷积之后的新数据尺寸BB会大于输入数据的尺寸A,因此只保留输出数据中的前面A个数据。另外,TCN中并不是每次卷积都会扩大一倍的 dilation,而是每两次扩大一倍的 dilation。我们的目标是预测 amount(金额),这对于股票交易和投资决策至关重要。卷积 + 修改数据尺寸 + ReLU + Dropout。卷积 + 修改数据尺寸 + ReLU + Dropout。pre_close(前收盘价)volume(成交量)close(收盘价)amount(金额)
2024-10-08 08:36:50 759
原创 BiGRU-Transformer时间序列预测(多输入单预测)——基于Pytorch框架
在模型评估阶段,我们将测试集的数据输入训练好的模型,得到预测结果。我们使用均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等指标评估模型性能。接着,通过设置历史步长和未来预测步长,生成适用于训练和测试的数据集。在训练过程中,每隔10个epoch打印一次损失,以监控模型的训练情况。本文将介绍一种基于Transformer和BiGRU(双向门控循环单元)的混合模型及其在时间序列预测中的应用。本模特适用于多输入单输出预测,适合风电预测,功率预测,负荷预测等等。
2024-10-08 08:34:14 693
原创 Seaborn数据可视化指南,附Python代码!!!
小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!Seaborn 作为一个基于 Matplotlib 的高级数据可视化库,以其简洁的语法和强大的功能,成为众多研究者和数据科学家的首选工具。
2024-10-08 08:34:01 322
原创 基于SHAP进行特征选择和贡献度计算——可解释性机器学习
SHAP 的名称源自合作博弈论中的 Shapley 值,它构建了一个加性的解释模型,将所有特征视为“贡献者”。通常从预测正向结果的角度考虑模型的预测结果,所以会拿出正向结果的SHAP值(拿出shap_values[1])。在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer(例如deep、gradient、kernel、tree、sampling等),以tree为例,它支持常用的XGB、LGB、CatBoost等树集成算法。
2024-08-25 08:57:02 1353
原创 iTransformer时序模型改进——基于SENet和TCN的倒置Transformer,性能暴涨
通过融合离散余弦变换(DCT)、通道注意力机制(SENet)与时间卷积网络(TCN),实现了对时间序列数据的高效多维特征提取。在此框架中,DCT专注于频域特征的捕捉,而通道注意力机制则进一步强化了对关键特征的识别与选择。最终,将这些经过优化的特征输入到iTransformer网络进行进一步处理,不仅能够显著提高预测的准确性,同时也提高了预测过程的效率。:经过DCT、通道注意力机制和TCN处理后的特征输入到iTransformer网络,进一步提高预测的准确性和效率。中的对比方法,MSE和MAE值越小越好。
2024-08-25 08:56:41 745
原创 加速网络收敛——BN、LN、WN与selu
最理想的结果就是让每一层输出的激活值为零均值、单位方差,从而能够使得张量在传播的过程当中,不会出现covariant shift,保证回传梯度的稳定性,不会有梯度爆炸或弥散的问题。通过对weight进行normalization,可以保证在梯度回传的时候,如果梯度越noisy(梯度越大),v的norm就越大,那么g/||v||就越小,从而就会抑制梯度。BN对某一层激活值做batch维度的归一化,也就是对于每个batch,该层相应的output位置归一化所使用的mean和variance都是一样的。
2024-07-31 21:32:20 411
原创 时间序列异常值检验替换——基于Hampel滤波器
本文将深入研究Hampel滤波器的原理和数学推导,并通过实际代码演示其在异常值处理中的应用。Hampel滤波器是一种基于中值和中值绝对偏差(MAD)的滤波器,旨在识别和去除时间序列数据中的异常值。Hampel滤波器通过使用中值和MAD,适应异常值的存在,提高异常值检测的准确性。最后,我们展示Hampel滤波器处理后的数据,并通过可视化对比原始数据,特别突出异常值的识别和去除效果。首先,我们生成一个包含异常值的正弦波数据,并通过可视化展示原始数据,感受一下异常值在数据集的呈现。
2024-07-31 21:18:44 558
原创 图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化
用一个相同的卷积核对整幅图像进行进行卷积操作,相当于对图像做一次全图滤波,符合卷积核特征的部分得到的结果比较大,不符合卷积核特征的部分得到的结果比较小,因此卷积操作后的结果可以较好地表征该区域符合卷积核所描述的特征的程度。上图中,Conv2中的像素点为5,是由Conv1的2×2的区域得来的,而该2×2区域是由原始图像的5×5区域计算而来,因此该像素的感受野是5×5。上图展示的是单个图像的卷积,而一个卷积神经网络,其每一层都是由多个图组成的,将其成为特征图或者特征平面,如下图所示。
2024-06-30 20:49:31 1022
原创 多模态情感分析——基于交叉多头注意力CMA进行图文多模态融合(含MVSA数据集)
由两个独立的数据集组成,分别是MVSA-Single数据集和 MVSA-Multi数据集,前者的每条图文对只有一个标注,后者的每条图文对由三个标注者给出。删除 MVSA-Single 数据集中图片和文字标注情感的正负极性不同(存在positive和negative)的图文对,剩余的图文对中,如果图片或者文本的情感有一者为中性(neutral),则选择另一个积极或者消极的标签作为该图文对的情感标签,最终得到4511个图文对。图像处理模块采用预训练的ResNet系列模型,提取图像特征,并进行特征变换。
2024-06-30 20:46:10 1573
原创 Python图像处理——基于Pytorch框架ResNet152特征提取的MNIST手写数字识别
小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!
2024-06-12 23:11:59 577
原创 Matlab图像处理——细胞图像的分割和计数显示
它的主要思想是通过使用滑动窗口将信号或图像中的每一个数据点用其邻域内所有数据点的中值来替换,从而有效地去除脉冲噪声(即椒盐噪声)。使用MATLAB编写的细胞图像分割及计数系统,实现了对图像内细胞的计数,以及对每个细胞周长和面积的测量,并分别展示了分割后的每个细胞的图像。实验步骤共分为图像预处理、图像预分割、空洞填充、黏连细胞分割、细胞个数统计、细胞特征统计及显示。对分割后的二值图,实施开运算,充细胞中的孔洞,使轻微粘连细胞分开及细小的细胞消失。进行二值化预分割,将细胞作为前景分割出来。
2024-06-12 23:10:56 1121
原创 YOLOv10代码详细介绍(附录训练教程和权重)
YOLOv10 是清华大学研究人员在 UltralyticsPython 清华大学的研究人员在 YOLOv10软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。并用大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。YOLOv10与v8结构相比,从结构上看添加了PSA和在C2f结构中添加了CBI结构,去掉了NMS。
2024-05-28 16:40:01 5882 1
原创 探寻导师:2024年最新研究生导师评价汇总
因此,特地搜集了五份导师评价,其中包括以前被迫删除的信息,力求为考生提供最全面、最真实的参考。当然,需要注意的是,由于信息的来源不尽相同,无法确保每一个学校每一位老师都有详细评价,但尽可能提供了多样化的信息,希望能够满足不同考生的需求。导师不仅关系到研究生的学术成长,还直接影响到未来的职业发展。为了帮助广大考生更好地选择导师,整理了最新最全的研究生导师评价,及配套查询网站。,助力实现考研的梦想,开启人生的新篇章。只有在与导师的良好互动中,学生才能真正实现自己的学术梦想,走上人生的成功之路。
2024-05-28 16:36:48 1441
原创 理解分组卷积
即在外围加了一圈 0。如果group是2,那么对应要将输入的32个通道分成2个16的通道,将输出的48个通道分成2个24的通道。对输出的2个24的通道,第一个24通道与输入的第一个16通道进行全卷积,第二个24通道与输入的第二个16通道进行全卷积。当 groups 为 2的时候,相当于将输入分为两组,并排放置两层,每层看到一半的输入通道并产生一半的输出通道,并且两者都是串联在一起的。极端情况下,输入输出通道数相同,比如为24,group大小也为24,那么每个输出卷积核,只与输入的对应的通道进行卷积。
2024-05-18 17:48:50 882
原创 YOLOv9代码详细介绍(附源码和权重)
本文将介绍YOLOv9的项目获取、项目目录以及单独文件分析。YOLOv9 的进步深深扎根于解决深度神经网络中信息丢失所带来的挑战。信息瓶颈原理和可逆函数的创新使用是其设计的核心,可确保 YOLOv9 保持高效率和高精度。
2024-05-02 07:42:56 1171
原创 Matlab图像处理——基于BP神经网络的车牌标识识别系统
matlab appdesigner,gui设计、simulink仿真......希望能帮到你!如果你想要进一步了解更多的相关知识,该数据集包含58类交通标志。图像的Hu的七个不变矩。
2024-05-01 10:31:09 629 1
原创 Python图像处理——逐帧读取视频文件的方法
matlab appdesigner,gui设计、simulink仿真......希望能帮到你!如果你想要进一步了解更多的相关知识,
2024-05-01 10:30:27 850
原创 Matlab信号处理——基于BP神经网络的调制信号分类与识别
如果你想要进一步了解更多的相关知识,可以关注下面公众号联系~会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!对信号进行采样和处理,得到了一系列特征参数,包括幅度均值、频率峰值、频率平方均值以及相位标准差、修正后的相位标准差。
2024-04-29 08:35:26 798
原创 Matlab如何更换主题颜色,让你拥有炫酷的界面!
MATLAB主题指的是Matlab的菜单栏,命令行窗口,工作区,编辑器及代码的颜色。Matlab本身只有一种默认主题,如下图。这是一种亮色主题,长时间使用容易引起眼睛疲劳。、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!此方法需要自行配色,难以配出令人满意的颜色组合。(3)在弹出的对话框中打开schemes文件夹,选择其中主题文件(*.prf)打开。(2)在matlab下进入解压目录,打开schemer_import.m运行。(1)解压下载的压缩包。
2024-04-29 08:32:24 2148
原创 【已解决】RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasSgemm( handle, opa, o
错误消息暗示一个索引t超出了按类索引的数组或张量的有效范围。这里,t应该在范围内,其中n_classes是类的数量。
2024-04-13 08:16:04 3432 2
原创 CLIP大模型图文检索——原理解读及代码实现
例如,对于ImageNet的类别,可以将其转化为类似"A photo of a {object}"这样的句子,对于ImageNet的1000个类别,就可以生成1000个这样的句子。推理时,将需要分类的图像送入图像编码器以获取特征,然后计算图像特征与1000个文本特征的余弦相似度,选择最相似的文本特征对应的句子,从而完成分类任务。在推理过程中,给定一张图片,通过图像编码器可得到该图片的特征。CLIP的训练过程是基于图像和文字配对的数据,其中图像输入经过图像编码器得到特征,而文本输入则经过文本编码器得到特征。
2024-04-13 08:03:02 2225
原创 Latex引用参考文献及8种引用格式改变
matlab appdesigner,gui设计、simulink仿真......希望能帮到你!命令1的作用是插入参考文献的样式,不同的杂志期刊的样式不一样。,用作者名首字母+年份后两位作标号,以字母顺序排序;,按字母的顺序排列,比较次序为作者、年度和标题;,类似plain,将月份全拼改为缩写,更显紧凑;,样式同plain,只是按照引用的先后排序;如果你想要进一步了解更多的相关知识,,国际电气电子工程师协会期刊样式;,美国工业和应用数学学会期刊样式;,美国计算机学会期刊样式;,美国心理学学会期刊样式;
2024-03-19 17:30:28 4562 1
原创 YOLOv9初探秘,含源码及详解~
它采用了新的骨干网络、检测头和损失函数,使得模型在保持较高准确率的同时,提高了推理速度。YOLOv9注重轻量级模型的设计和优化,使得模型在保持较高性能的同时,具有更小的体积和更快的推理速度。这意味着在相同的参数量下,YOLOv9能够提取更多的特征信息,从而提高了目标检测的准确率。YOLOv9在YOLOv8的基础上进行了进一步的改进和优化,使得模型在性能上有了显著的提升。这使得模型能够适应不同的应用场景和需求。通过引入新的骨干网络和检测头,YOLOv8能够提取更丰富的特征信息,从而提高了目标检测的准确率。
2024-03-05 16:52:44 1951
原创 YOLOv9来了,YOLOv5和YOLOv8还香不香?
总的来说,截止到写作本文的时间,与以前的YOLO变种相比,YOLOv5和YOLOv8都在速度和准确性方面表现出色。PAN-FPN:双流的FPN,必须香,也必须快,但是量化还是有些需要图优化才可以达到最优的性能,比如cat前后的scale优化等等,这里除了上采样、CBS卷积模块,最为主要的还有C3模块;Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;
2024-03-05 16:50:59 3966
原创 Python实用小工具合集来咯~~
matlab appdesigner,gui设计、simulink仿真......希望能帮到你!如果你想要进一步了解更多的相关知识,建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~】即可获取exe文件。】即可获取exe文件。】即可获取exe文件。】即可获取exe文件。】即可获取exe文件。
2024-02-27 17:17:03 671
原创 BERT中文文本分类项目实战合集(含完整代码)
如果你想要进一步了解更多的相关知识,建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。
2024-02-27 17:15:09 1133
原创 MATLAB卷积神经网络——基于ResNet-50进行图像分类
matlab appdesigner,gui设计、simulink仿真......希望能帮到你!等等...,可私聊小编,为你量身进行定制。关注公众号,每日更新更多精彩内容!(2)在matlab打开下载的resnet50.mlpkginstall文件。(3)使用下面代码进行测试,出现结果说明安装成功。如果你想要进一步了解更多的相关知识,(2)将数据集按照如下目录进行放置。然后点击导出→使用初始参数生成代码。(2)导入一张图片进行测试。(3)生成预训练模型。
2024-02-21 16:48:02 3705 12
Matlab通信原理-实现AM和FM调制解调处理
2024-10-08
Matlab数字图像处理-基于分割对比匹配的验证码识别系统
2024-10-08
Matlab数字图像处理-实现图像处理GUI软件实现(功能超多)
2024-10-08
Matlab数字图像处理-实现图像处理GUI软件实现
2024-10-08
Matlab数字信号处理-最小均方自适应滤波算法(LMS及改进算法)
2024-10-08
脉搏信号去噪、脉率计算-Matlab数字信号处理
2024-10-08
Matlab数字信号处理平台-含信号生成、运算、卷积、变换、抽样、滤波器设计应用等
2024-10-08
Matlab语音增强-使用谱减法、维纳滤波、卡尔曼滤波进行语音增强
2024-06-30
Matlab图像处理-细胞图像的分割和计数显示
2024-06-30
Matlab信号处理-基于FastICA的声源分离系统
2024-06-30
Matlab通信原理-Matlab实现QPSK,16QAM,64QAM,256QAM,1024QAM仿真
2024-06-29
Python图像处理-基于YOLOv8和Yolov10的台球图像检测,可识别出个数及球号
2024-06-29
Matlab图像处理-基于BP神经网络的车牌标识识别系统
2024-06-29
Matlab信号处理-基于BP神经网络的调制信号分类与识别
2024-06-29
Matlab智能算法-基于LSTM网络及蜉蝣算法优化LSTM
2024-06-28
Matlab图像处理-基于小波变换的数字图像水印嵌入和提取算法(GUI界面)
2024-06-28
AppDesigner语音滤波器设计-IIR、IIR、维纳滤波、卡尔曼滤波、自适应滤波
2024-06-28
Matlab通信原理-QPSK数字通信系统的仿真
2024-06-28
Matlab界面设计-GUI实现动态绘制函数图像
2024-06-28
Matlab图像处理大作业-GUI界面实现图像处理
2024-06-28
Matlab界面设计-二维以及三维图形绘制GUI设计
2024-06-28
Matlab数字调制解调-自定义函数实现BPSK和QPSK和QAM
2024-06-28
Matlab信号发生器-三角波、正弦波、方波
2024-06-28
Matlab信号处理-基于LSB和DCB音频水印嵌入提取算法
2024-06-28
基于机器视觉的苹果中心花及边花识别方法Matlab图像处理
2024-06-28
基于 PCA-GA-BP 神经网络的安全风险评估
2024-06-28
Matlab信号处理-钢琴模拟GUI加强版
2024-06-28
Matlab实现钢琴演奏-信号处理钢琴GUI演绎夜的第七章
2024-06-28
基于ABC-LSTM神经网络模型的跨境电商上市企业经营绩效评价研究
2024-06-28
基于压缩感知的图像复原算法
2024-06-28
基于免疫理论的农产品物流外包风险预警模型研究
2024-06-28
基于CNN的多输入单输出回归预测(Matlab-mlAPP界面)
2024-01-04
基于CNN的多输入单输出回归预测(Matlab-GUI界面)
2024-01-04
基于CNN的多输入单输出回归预测(Matlab源码)
2024-01-04
基于LSTM的多输入单输出回归预测(Matlab-mlAPP界面)
2024-01-04
基于LSTM的多输入单输出回归预测(Matlab-GUI界面)
2024-01-04
基于LSTM的多输入单输出回归预测(Matlab源码)
2024-01-04
Matlab通信原理-正弦信号均匀量化PCM编解码
2023-12-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人