自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(168)
  • 资源 (11)
  • 收藏
  • 关注

原创 Python图像处理——基于ResNet152的人脸识别签到系统(Pytorch框架)

将数据按照8:2分成训练集和验证集,保证模型在训练阶段和验证阶段都能得到合理的评估。选用了ResNet152模型,并根据数据集的类别数量替换了最后的分类层,以确保模型可以识别多个人脸类别。如果人脸被识别,系统将在界面右侧显示签到人的信息和签到时间。本次使用明星做为数据集,首先编写爬虫函数,根据关键字爬取对应的明星,爬取结果保存至data文件夹,并以标签名作为文件名。训练结束后,界面将显示最佳准确度,并会自动保存最佳模型权重。主界面如图所示,具体包括模型训练、摄像头开关、图片导入、签到、清空。

2024-10-26 08:27:23 521

原创 Python数字图像处理——基于SIFT特征提取的图像拼接算法(暴力匹配、knn匹配和hist匹配)

本文通过Python实现基于SIFT特征提取的图像拼接算法,包括三种匹配策略:暴力匹配、KNN(k近邻)匹配和hist直方图的特征匹配。它能够在图像中找到具有独特性和稳定性的关键点,并通过计算这些关键点的局部特征描述符来进行图像匹配。在图像拼接任务中,SIFT能够从两幅图像中提取关键点和特征描述符,然后通过匹配这些特征来寻找图像的重叠区域。③ 单应矩阵计算:利用匹配的特征点对,计算图像之间的单应矩阵,从而确定两幅图像之间的几何关系。④ 图像拼接:通过透视变换对图像进行对齐,并进行图像的无缝拼接。

2024-10-26 08:24:52 457

原创 Matlab数字图像处理——基于形态学处理的硬币计数系统(含m文件和GUI)

接着,通过形态学操作,估计并去除图像背景,从而增强硬币与背景的对比度。在这里,滤波的主要作用是去除图像中的高频噪声,而形态学操作则帮助我们进一步分离目标区域和背景区域。接下来,进行二值化,将图像转换为黑白两色,方便后续的轮廓检测。最后,通过圆形检测获得硬币的半径后,根据硬币的半径与平均值的比例,推断出不同面额的硬币个数。最终,通过累加各个硬币的面额,输出硬币的总数和总额。通过灰度化、形态学操作、滤波、二值化、边缘检测等,来识别硬币的轮廓并计算其半径。根据硬币的大小推断其面额,输出硬币的总数和总额。

2024-10-26 08:22:49 461

原创 Matlab数字信号处理——基于改进小波变换的图像去噪方法(7种去噪算法)

在传统小波去噪的基础上,结合离散余弦变换(DCT)的优势,对信号进行进一步处理,以提高去噪效果,特别适用于周期性或具有强局部特征的信号。该方法利用小波变换分离出信号中的噪声成分,并通过设置合适的阈值对小波系数进行收缩,保留主要信息的同时,去除噪声。通过引入最大熵原理,该算法在去噪过程中对信号进行最优估计,保持信号的信息量最大化,从而实现平衡信号和噪声的去除。模极大值法通过分析小波变换中信号的极大值点,提取信号的结构特征,进而有效去除噪声,并且能保留信号的边缘信息。

2024-10-26 08:20:26 641

原创 LSTM-EAAtention-Transfomer——基于有效附加注意力的时间序列预测

在自然语言处理(NLP)领域,传统的加性注意力机制通过元素乘法而非点积来捕捉令牌间的成对交互,以获取全局上下文信息。这种机制依赖于三个关键的注意力分量——查询(Q)、键(K)和值(V)——来编码输入序列中上下文信息的相关性得分。这种方法被称为有效的附加注意力,它不仅提高了推理速度,而且生成了更强大、更丰富的上下文表示。在传统的RNN中,由于梯度消失的问题,网络往往难以捕捉序列中的长期依赖关系。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。

2024-10-08 08:52:08 1367

原创 ModernTCN:用于一般时间序列分析的现代纯卷积结构

文章的ModernTCN能够获得比以往基于卷积的方法更大的ERF。Groups是群组卷积中的组数。ModernTCN,一种现代纯卷积结构,它在多个主流时间序列分析任务上取得了与最先进的基于Transformer和MLP的模型相媲美的性能,同时保持了卷积模型的效率优势。:通过使用大核心尺寸而不是堆叠更多小核心,ModernTCN显著扩大了ERF,这有助于更好地捕捉时间序列数据中的长期依赖性。借鉴了Transformer中的架构设计,ModernTCN采用了深度卷积和逐点卷积的组合,以提高模型的表示能力。

2024-10-08 08:46:48 326

原创 TCN-GRU-Transformer时间序列预测(多输入单预测)——基于tf框架

TCN用于捕捉时间序列中的长期依赖性,而GRU层则帮助模型理解序列的动态变化,注意力机制则进一步提升了模型对关键特征的关注度。TCN模块包括卷积层、批标准化层和Dropout层,并利用残差连接来保留有用的信息。注意力模块通过对序列数据进行加权处理,进一步提高了模型对时间序列中重要特征的关注度。在测试集上进行预测后,我们计算了模型的评价指标,包括R²、均方根误差(RMSE)和平均绝对误差(MAE),并将预测结果与真实值进行了可视化对比。适合各种时间序列预测时间序列预测。2.多时间步预测,单时间步预测。

2024-10-08 08:43:39 440

原创 LSTM-Transformer时间序列预测(单输入单预测)——基于Pytorch框架

在我们的模型中,我们使用了Transformer编码器来提取输入序列中的特征。Transformer的核心优势在于其自注意力机制,能够捕捉序列中不同位置之间的依赖关系。在我们的模型中,LSTM解码器负责根据Transformer编码器提取的特征进行预测。单输入单输出预测,适合风电预测,功率预测,负荷预测等等。由于Transformer本身不具备处理序列位置信息的能力,我们使用了位置编码来为每个输入数据点添加位置信息。此外,我们还绘制了预测结果与真实值的对比图,以直观展示模型的预测性能。

2024-10-08 08:40:04 988

原创 TCN-Transformer时间序列预测(多输入单预测)——基于Pytorch框架

卷积结束后,由于padding 的原因,卷积之后的新数据尺寸BB会大于输入数据的尺寸A,因此只保留输出数据中的前面A个数据。另外,TCN中并不是每次卷积都会扩大一倍的 dilation,而是每两次扩大一倍的 dilation。我们的目标是预测 amount(金额),这对于股票交易和投资决策至关重要。卷积 + 修改数据尺寸 + ReLU + Dropout。卷积 + 修改数据尺寸 + ReLU + Dropout。pre_close(前收盘价)volume(成交量)close(收盘价)amount(金额)

2024-10-08 08:36:50 759

原创 BiGRU-Transformer时间序列预测(多输入单预测)——基于Pytorch框架

在模型评估阶段,我们将测试集的数据输入训练好的模型,得到预测结果。我们使用均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等指标评估模型性能。接着,通过设置历史步长和未来预测步长,生成适用于训练和测试的数据集。在训练过程中,每隔10个epoch打印一次损失,以监控模型的训练情况。本文将介绍一种基于Transformer和BiGRU(双向门控循环单元)的混合模型及其在时间序列预测中的应用。本模特适用于多输入单输出预测,适合风电预测,功率预测,负荷预测等等。

2024-10-08 08:34:14 693

原创 Seaborn数据可视化指南,附Python代码!!!

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!Seaborn 作为一个基于 Matplotlib 的高级数据可视化库,以其简洁的语法和强大的功能,成为众多研究者和数据科学家的首选工具。

2024-10-08 08:34:01 322

原创 基于SHAP进行特征选择和贡献度计算——可解释性机器学习

SHAP 的名称源自合作博弈论中的 Shapley 值,它构建了一个加性的解释模型,将所有特征视为“贡献者”。通常从预测正向结果的角度考虑模型的预测结果,所以会拿出正向结果的SHAP值(拿出shap_values[1])。在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer(例如deep、gradient、kernel、tree、sampling等),以tree为例,它支持常用的XGB、LGB、CatBoost等树集成算法。

2024-08-25 08:57:02 1353

原创 iTransformer时序模型改进——基于SENet和TCN的倒置Transformer,性能暴涨

通过融合离散余弦变换(DCT)、通道注意力机制(SENet)与时间卷积网络(TCN),实现了对时间序列数据的高效多维特征提取。在此框架中,DCT专注于频域特征的捕捉,而通道注意力机制则进一步强化了对关键特征的识别与选择。最终,将这些经过优化的特征输入到iTransformer网络进行进一步处理,不仅能够显著提高预测的准确性,同时也提高了预测过程的效率。:经过DCT、通道注意力机制和TCN处理后的特征输入到iTransformer网络,进一步提高预测的准确性和效率。中的对比方法,MSE和MAE值越小越好。

2024-08-25 08:56:41 745

原创 加速网络收敛——BN、LN、WN与selu

最理想的结果就是让每一层输出的激活值为零均值、单位方差,从而能够使得张量在传播的过程当中,不会出现covariant shift,保证回传梯度的稳定性,不会有梯度爆炸或弥散的问题。通过对weight进行normalization,可以保证在梯度回传的时候,如果梯度越noisy(梯度越大),v的norm就越大,那么g/||v||就越小,从而就会抑制梯度。BN对某一层激活值做batch维度的归一化,也就是对于每个batch,该层相应的output位置归一化所使用的mean和variance都是一样的。

2024-07-31 21:32:20 411

原创 时间序列异常值检验替换——基于Hampel滤波器

本文将深入研究Hampel滤波器的原理和数学推导,并通过实际代码演示其在异常值处理中的应用。Hampel滤波器是一种基于中值和中值绝对偏差(MAD)的滤波器,旨在识别和去除时间序列数据中的异常值。Hampel滤波器通过使用中值和MAD,适应异常值的存在,提高异常值检测的准确性。最后,我们展示Hampel滤波器处理后的数据,并通过可视化对比原始数据,特别突出异常值的识别和去除效果。首先,我们生成一个包含异常值的正弦波数据,并通过可视化展示原始数据,感受一下异常值在数据集的呈现。

2024-07-31 21:18:44 558

原创 图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化

用一个相同的卷积核对整幅图像进行进行卷积操作,相当于对图像做一次全图滤波,符合卷积核特征的部分得到的结果比较大,不符合卷积核特征的部分得到的结果比较小,因此卷积操作后的结果可以较好地表征该区域符合卷积核所描述的特征的程度。上图中,Conv2中的像素点为5,是由Conv1的2×2的区域得来的,而该2×2区域是由原始图像的5×5区域计算而来,因此该像素的感受野是5×5。上图展示的是单个图像的卷积,而一个卷积神经网络,其每一层都是由多个图组成的,将其成为特征图或者特征平面,如下图所示。

2024-06-30 20:49:31 1022

原创 多模态情感分析——基于交叉多头注意力CMA进行图文多模态融合(含MVSA数据集)

由两个独立的数据集组成,分别是MVSA-Single数据集和 MVSA-Multi数据集,前者的每条图文对只有一个标注,后者的每条图文对由三个标注者给出。删除 MVSA-Single 数据集中图片和文字标注情感的正负极性不同(存在positive和negative)的图文对,剩余的图文对中,如果图片或者文本的情感有一者为中性(neutral),则选择另一个积极或者消极的标签作为该图文对的情感标签,最终得到4511个图文对。图像处理模块采用预训练的ResNet系列模型,提取图像特征,并进行特征变换。

2024-06-30 20:46:10 1573

原创 Python图像处理——基于Pytorch框架ResNet152特征提取的MNIST手写数字识别

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

2024-06-12 23:11:59 577

原创 Matlab图像处理——细胞图像的分割和计数显示

它的主要思想是通过使用滑动窗口将信号或图像中的每一个数据点用其邻域内所有数据点的中值来替换,从而有效地去除脉冲噪声(即椒盐噪声)。使用MATLAB编写的细胞图像分割及计数系统,实现了对图像内细胞的计数,以及对每个细胞周长和面积的测量,并分别展示了分割后的每个细胞的图像。实验步骤共分为图像预处理、图像预分割、空洞填充、黏连细胞分割、细胞个数统计、细胞特征统计及显示。对分割后的二值图,实施开运算,充细胞中的孔洞,使轻微粘连细胞分开及细小的细胞消失。进行二值化预分割,将细胞作为前景分割出来。

2024-06-12 23:10:56 1121

原创 YOLOv10代码详细介绍(附录训练教程和权重)

YOLOv10 是清华大学研究人员在 UltralyticsPython 清华大学的研究人员在 YOLOv10软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。并用大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。YOLOv10与v8结构相比,从结构上看添加了PSA和在C2f结构中添加了CBI结构,去掉了NMS。

2024-05-28 16:40:01 5882 1

原创 探寻导师:2024年最新研究生导师评价汇总

因此,特地搜集了五份导师评价,其中包括以前被迫删除的信息,力求为考生提供最全面、最真实的参考。当然,需要注意的是,由于信息的来源不尽相同,无法确保每一个学校每一位老师都有详细评价,但尽可能提供了多样化的信息,希望能够满足不同考生的需求。导师不仅关系到研究生的学术成长,还直接影响到未来的职业发展。为了帮助广大考生更好地选择导师,整理了最新最全的研究生导师评价,及配套查询网站。,助力实现考研的梦想,开启人生的新篇章。只有在与导师的良好互动中,学生才能真正实现自己的学术梦想,走上人生的成功之路。

2024-05-28 16:36:48 1441

原创 理解分组卷积

即在外围加了一圈 0。如果group是2,那么对应要将输入的32个通道分成2个16的通道,将输出的48个通道分成2个24的通道。对输出的2个24的通道,第一个24通道与输入的第一个16通道进行全卷积,第二个24通道与输入的第二个16通道进行全卷积。当 groups 为 2的时候,相当于将输入分为两组,并排放置两层,每层看到一半的输入通道并产生一半的输出通道,并且两者都是串联在一起的。极端情况下,输入输出通道数相同,比如为24,group大小也为24,那么每个输出卷积核,只与输入的对应的通道进行卷积。

2024-05-18 17:48:50 882

原创 Prophet时序预测工具库——别再鲨乎乎的install fbprophet了

如果你想要进一步了解更多的相关知识,

2024-05-18 17:45:10 694 2

原创 付费文章合集第二期

matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

2024-05-11 21:29:15 347

原创 KAN网络最全解析——比肩MLP和Transformer?

如果你想要进一步了解更多的相关知识,

2024-05-11 21:28:29 5182

原创 YOLOv9代码详细介绍(附源码和权重)

本文将介绍YOLOv9的项目获取、项目目录以及单独文件分析。YOLOv9 的进步深深扎根于解决深度神经网络中信息丢失所带来的挑战。信息瓶颈原理和可逆函数的创新使用是其设计的核心,可确保 YOLOv9 保持高效率和高精度。

2024-05-02 07:42:56 1171

原创 Matlab图像处理——基于BP神经网络的车牌标识识别系统

matlab appdesigner,gui设计、simulink仿真......希望能帮到你!如果你想要进一步了解更多的相关知识,该数据集包含58类交通标志。图像的Hu的七个不变矩。

2024-05-01 10:31:09 629 1

原创 Python图像处理——逐帧读取视频文件的方法

matlab appdesigner,gui设计、simulink仿真......希望能帮到你!如果你想要进一步了解更多的相关知识,

2024-05-01 10:30:27 850

原创 Matlab信号处理——基于BP神经网络的调制信号分类与识别

如果你想要进一步了解更多的相关知识,可以关注下面公众号联系~会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!对信号进行采样和处理,得到了一系列特征参数,包括幅度均值、频率峰值、频率平方均值以及相位标准差、修正后的相位标准差。

2024-04-29 08:35:26 798

原创 Matlab如何更换主题颜色,让你拥有炫酷的界面!

MATLAB主题指的是Matlab的菜单栏,命令行窗口,工作区,编辑器及代码的颜色。Matlab本身只有一种默认主题,如下图。这是一种亮色主题,长时间使用容易引起眼睛疲劳。、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!此方法需要自行配色,难以配出令人满意的颜色组合。(3)在弹出的对话框中打开schemes文件夹,选择其中主题文件(*.prf)打开。(2)在matlab下进入解压目录,打开schemer_import.m运行。(1)解压下载的压缩包。

2024-04-29 08:32:24 2148

原创 【已解决】RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling `cublasSgemm( handle, opa, o

错误消息暗示一个索引t超出了按类索引的数组或张量的有效范围。这里,t应该在范围内,其中n_classes是类的数量。

2024-04-13 08:16:04 3432 2

原创 CLIP大模型图文检索——原理解读及代码实现

例如,对于ImageNet的类别,可以将其转化为类似"A photo of a {object}"这样的句子,对于ImageNet的1000个类别,就可以生成1000个这样的句子。推理时,将需要分类的图像送入图像编码器以获取特征,然后计算图像特征与1000个文本特征的余弦相似度,选择最相似的文本特征对应的句子,从而完成分类任务。在推理过程中,给定一张图片,通过图像编码器可得到该图片的特征。CLIP的训练过程是基于图像和文字配对的数据,其中图像输入经过图像编码器得到特征,而文本输入则经过文本编码器得到特征。

2024-04-13 08:03:02 2225

原创 Latex引用参考文献及8种引用格式改变

matlab appdesigner,gui设计、simulink仿真......希望能帮到你!命令1的作用是插入参考文献的样式,不同的杂志期刊的样式不一样。,用作者名首字母+年份后两位作标号,以字母顺序排序;,按字母的顺序排列,比较次序为作者、年度和标题;,类似plain,将月份全拼改为缩写,更显紧凑;,样式同plain,只是按照引用的先后排序;如果你想要进一步了解更多的相关知识,,国际电气电子工程师协会期刊样式;,美国工业和应用数学学会期刊样式;,美国计算机学会期刊样式;,美国心理学学会期刊样式;

2024-03-19 17:30:28 4562 1

原创 付费文章合集第一期

matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

2024-03-19 17:29:57 498

原创 YOLOv9初探秘,含源码及详解~

它采用了新的骨干网络、检测头和损失函数,使得模型在保持较高准确率的同时,提高了推理速度。YOLOv9注重轻量级模型的设计和优化,使得模型在保持较高性能的同时,具有更小的体积和更快的推理速度。这意味着在相同的参数量下,YOLOv9能够提取更多的特征信息,从而提高了目标检测的准确率。YOLOv9在YOLOv8的基础上进行了进一步的改进和优化,使得模型在性能上有了显著的提升。这使得模型能够适应不同的应用场景和需求。通过引入新的骨干网络和检测头,YOLOv8能够提取更丰富的特征信息,从而提高了目标检测的准确率。

2024-03-05 16:52:44 1951

原创 YOLOv9来了,YOLOv5和YOLOv8还香不香?

总的来说,截止到写作本文的时间,与以前的YOLO变种相比,YOLOv5和YOLOv8都在速度和准确性方面表现出色。PAN-FPN:双流的FPN,必须香,也必须快,但是量化还是有些需要图优化才可以达到最优的性能,比如cat前后的scale优化等等,这里除了上采样、CBS卷积模块,最为主要的还有C3模块;Backbone:使用的依旧是CSP的思想,不过YOLOv5中的C3模块被替换成了C2f模块,实现了进一步的轻量化,同时YOLOv8依旧使用了YOLOv5等架构中使用的SPPF模块;

2024-03-05 16:50:59 3966

原创 Python实用小工具合集来咯~~

matlab appdesigner,gui设计、simulink仿真......希望能帮到你!如果你想要进一步了解更多的相关知识,建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~】即可获取exe文件。】即可获取exe文件。】即可获取exe文件。】即可获取exe文件。】即可获取exe文件。

2024-02-27 17:17:03 671

原创 BERT中文文本分类项目实战合集(含完整代码)

如果你想要进一步了解更多的相关知识,建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~建议复制关键词回复,不出错哦~~】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。】即可免费领取安装包。

2024-02-27 17:15:09 1133

原创 MATLAB卷积神经网络——基于ResNet-50进行图像分类

matlab appdesigner,gui设计、simulink仿真......希望能帮到你!等等...,可私聊小编,为你量身进行定制。关注公众号,每日更新更多精彩内容!(2)在matlab打开下载的resnet50.mlpkginstall文件。(3)使用下面代码进行测试,出现结果说明安装成功。如果你想要进一步了解更多的相关知识,(2)将数据集按照如下目录进行放置。然后点击导出→使用初始参数生成代码。(2)导入一张图片进行测试。(3)生成预训练模型。

2024-02-21 16:48:02 3705 12

原创 Matlab图像处理——图像编码解码

如果你想要进一步了解更多的相关知识,

2024-02-21 16:42:14 1535

Matlab通信原理-实现AM和FM调制解调处理

(1)AM      首先我们看基带信号和载波信号,两个信号相乘,就是对基带信号进行频谱偏移,载波信号为cos(2*pi*50.*t)。就是左右搬移50Hz,得到调制信号,由于计算精度有限,所以最后的偏移结果没有这么精确。解调过程,再次乘以载波信号,并经过一个带通滤波器,再乘以一个合适的系数,就可以得到与原来信号幅度一致的解调信号。由于原始信号中包含周期性矩形脉冲信号,所以在经过带通滤波器时会有一部分频率被率除掉。 (2)PM      首先先进行频率调制,得到调制信号,就是公式的加减乘除,不再多说。然后接下来,进行非相干解调,需要对已调信号做微分和使用希尔伯特变换,如图可以看出他的包络,接下来恢复基带信号,振幅小了些,是因为增加了直流分量。最后构造解析信号,利用希尔伯特变换的正交性,从已调信号中提取出包络。hilbert函数是求解析信号,要得到希尔伯特变换取其虚部即可。然后乘以合适的系数,就可以基本恢复基带信号。 详见:https://mp.weixin.qq.com/s/vbz9BAw6UlC3ovM-Eql_fg

2024-10-08

Matlab数字图像处理-基于分割对比匹配的验证码识别系统

1)问题分析 利用信号与系统所学知识,我们可以对图像的每个像素进行滤波处理,得到黑白图像,再经过进一步处理从而得到一个二值化的二维矩阵。因此按照上述流程,我们利用Matlab将所获取的验证码进行二值化、分割、对比、匹配四部操作即可完成识别工作。每张验证码包含四个字符,通过分割图像而将每个字符单独提取出来进行比对。 (2)获取验证码图片 获取了71张验证码,依次命名为textx.jpg。他们都是70X20的jpg图像。 (3)批量处理所获取的验证码 验证码共包含四个字符,他们可以是大写字母、小写字母和数字。依次进行二值化、分割。得到的单个字符来建立一个包含所有大小写字母和数字的字符库,以供给对比、分析使用. (4)对比匹配 将待识别验证码进行二值化、分割处理以得到单个字符,再将得到的单个字符与上一步所建立的字符库里的文件进行比对 详见:https://mp.weixin.qq.com/s/6_uqBmloZClZMTohO12-Nw

2024-10-08

Matlab数字图像处理-实现图像处理GUI软件实现(功能超多)

基本处理包括图像读取、撤销、还原、缩小、放大、剪切、旋转、反色、保存。 滤波包括:低通和高通 噪声包括:椒盐、乘兴性和高斯噪声 滤除噪声:中值滤波和线性滤波 图像变换:离散傅里叶变换、离散余弦变换 图像分割:6种算子进行分割 图像增强:基于直方图和点运算 人脸识别:拓展功能 详见:https://mp.weixin.qq.com/s/Ds53FOjP-6ocVf1YlwmtwQ

2024-10-08

Matlab数字图像处理-实现图像处理GUI软件实现

参考windows的画图软件、photoshop软件,设计一个界面友好、功能强大的数字图像处理软件。包括的功能:(1)  图像处理的基本功能。比如图片读取与保存、彩色图像灰度化、噪声添加与去噪、直方图生成与均衡化等。(2)  在基本功能实现的前提条件下,根据日常图片处理需求设计功能。比如美颜、打马赛克、加文字、压缩、照片边框、图片特效功能。 详见:https://mp.weixin.qq.com/s/Z6LrChgc8hit5bXKCUJtlg

2024-10-08

Matlab数字信号处理-最小均方自适应滤波算法(LMS及改进算法)

(1)LMS自适应算法LMS自适应算法是一种利用最小均方误差准则进行自适应调整的算法。其主要特点是简单易实现,计算量小,适合于实时处理。基本原理是通过迭代更新滤波器系数,使得输出信号与期望信号之间的均方误差最小。 (2)归一化LMS自适应算法归一化LMS(Normalized LMS, NLMS)算法是对标准LMS算法的一种改进,其主要优点是自动调节步长因子,从而提高算法的收敛速度和稳定性。 (3)基于S函数的LMS自适应算法 基于S函数的LMS自适应算法是利用S函数(激活函数)引入非线性处理,从而增强算法对非线性信号的处理能力。S函数可以使得算法在面对复杂信号环境时表现出更强的适应能力。 (4)变步长LMS自适应算法变步长LMS(Variable Step-Size LMS, VSSLMS)算法通过动态调整步长因子以优化收敛速度和稳态误差之间的平衡。根据误差信号的变化趋势,算法自动调节步长,使得在快速收敛和低稳态误差之间取得最佳平衡。 详见:https://mp.weixin.qq.com/s/7Orwrkz0tSMKM0BJ2ugEeA

2024-10-08

脉搏信号去噪、脉率计算-Matlab数字信号处理

(1)信号读取通过点击界面的“导入”按钮,用户可以选择并载入脉搏信号数据文件。系统读取文件并将数据存储于全局变量中以便后续处理。 (2)信号去噪通过一系列滤波器对脉搏信号进行处理,包括巴特沃斯滤波器去噪、平稳小波去噪以及陷波器滤波。a.巴特沃斯低通滤波器去除频率大于100 Hz高频噪声。b.小波平移不变量去噪法,基线漂移、人体呼吸等低频干扰, 频率小于1 Hz。c.带阻滤波器去除50Hz的工频干扰。 (3)脉率计算 通过对信号的峰值检测计算脉率,并展示平均值、标准差、最大值及最小值等统计信息。 详见:https://mp.weixin.qq.com/s/gmn0kfccZ4KqOGg8kpCspw

2024-10-08

Matlab数字信号处理平台-含信号生成、运算、卷积、变换、抽样、滤波器设计应用等

matlab含信号生成、运算、卷积、变换、抽样、滤波器设计应用等,详见: https://mp.weixin.qq.com/s/0HPL2Q9IsCYDWH6bxsmHWw

2024-10-08

Matlab语音增强-使用谱减法、维纳滤波、卡尔曼滤波进行语音增强

音频读取与显示:可以读取多种格式的音频文件,并显示其时域波形和频谱图。 录制音频:可以设置录音时间、采样频率和声道数,并保存录制的音频。 添加噪声:支持伽马噪声、瑞丽噪声、高斯白噪声和冲击噪声的添加。 去噪处理:提供谱减法、维纳滤波和卡尔曼滤波三种去噪算法。 信噪比计算:可以计算并显示去噪前后音频的信噪比(SNR)。 详见:https://mp.weixin.qq.com/s/LbECJQHxFOdsCtPK9PtjdQ

2024-06-30

Matlab图像处理-细胞图像的分割和计数显示

使用MATLAB编写的细胞图像分割及计数系统,实现了对图像内细胞的计数,以及对每个细胞周长和面积的测量,并分别展示了分割后的每个细胞的图像。实验步骤共分为图像预处理、图像预分割、空洞填充、黏连细胞分割、细胞个数统计、细胞特征统计及显示。 1.图像预处理:使用中值滤波对细胞图像进行保边去噪的处理。 2.预分割:用大津法Otsu进行二值化预分割,将细胞作为前景分割出来。 3.孔洞填充:对分割后的二值图,实施开运算,充细胞中的孔洞,使轻微粘连细胞分开及细小的细胞消失。 4.细胞个数统计及显示:首先删除掉边缘上的细胞,再利用四连通区域标记算法统计分割后非粘连细胞的个数,最后在原图上标记出分割好的细胞,并标号。 详见:https://mp.weixin.qq.com/s/9sKsO9b1U9UrF8sDDuPvFQ

2024-06-30

Matlab信号处理-基于FastICA的声源分离系统

两首歌混合在一起,然后导入matlab,用gui先显示它的原始时频域波形,然后用一个算法,把它们两首歌分开,然后分别显示它们两首各自的的时频域波形,然后要有一个播放器,可以播放原先混合的音频,还可以播放分开后各自的音频。本文将提供一个简单的GUI应用程序示例。以下是基于FastICA实现声源分离系统的步骤: (1)数据收集:使用麦克风录制混合信号。 (2)预处理:对混合信号进行预处理(如中心化和白化)。 (3)FastICA算法:使用FastICA算法分离独立成分。 (4)结果分析:分析分离出的独立成分,检查是否成功分离出原始的声源信号。 详见:https://mp.weixin.qq.com/s/ki14OujWbXDPe-5rSji5tw

2024-06-30

Matlab通信原理-Matlab实现QPSK,16QAM,64QAM,256QAM,1024QAM仿真

1. 基本调制解调算法 首先,我们需要实现各调制方式的基本调制和解调算法。对于每一种调制方式,将使用Matlab内置函数或者自定义函数进行信号的调制和解调。例如,对于QPSK,我们可以使用pskmod和pskdemod函数,而对于QAM,可以使用qammod和qamdemod函数。 2. 仿真环境的搭建 创建一个仿真环境,包括信号源、调制器、信道、解调器和接收器。信号源将生成随机比特序列,调制器将比特序列转换为调制信号,信道将模拟真实通信环境中的噪声和干扰,解调器将接收到的信号恢复为比特序列,接收器将计算误码率(BER)以评估系统性能。 3. 仿真参数的设置 为了进行公平的比较,设置相同的仿真参数,包括信号长度、信噪比(SNR)范围和仿真次数。将使用不同的SNR值来测试各调制方式在不同信道条件下的性能。、 详见:https://mp.weixin.qq.com/s/o8KHn6RlB8dTLYHhYXThXA

2024-06-29

Python图像处理-基于YOLOv8和Yolov10的台球图像检测,可识别出个数及球号

基于台球建立数据集,利用Yolov8进行训练,然后根据训练好的权重进行台球个数和球号的识别 (1)根据数据集进行训练 (2)加载best权重,用于图片的检测 (3)编写检测代码用于输出 详见:https://mp.weixin.qq.com/s/JckbkFw0YBEf5IBhw0PHPw 注:资源包括8和10

2024-06-29

Matlab图像处理-基于BP神经网络的车牌标识识别系统

1. 数据集介绍 中国交通标志数据集: https://nlpr.ia.ac.cn/pal/trafficdata/detection.html 该数据集包含58类交通标志。 2. 数据处理 按照文件标签,将数据集划分了58类 3.特征提取 图像的Hu的七个不变矩 4.BP网络训练 详见:https://mp.weixin.qq.com/s/MO-IWYSdEl3cwvxhLhMoug

2024-06-29

Matlab信号处理-基于BP神经网络的调制信号分类与识别

1. 信号生成 我们首先生成了包括8种调制方式的调制信号 2. 特征提取 对信号进行采样和处理,得到了一系列特征参数,包括幅度均值、频率峰值、频率平方均值以及相位标准差、修正后的相位标准差。最后生成了一共480条数据,如下所示,前五列为特征值,最后一列为调制信号的类别(1-8) 3.BP网络训练 详见:https://mp.weixin.qq.com/s/0dyggMf9LxGpl9wKR8V1Tw

2024-06-29

Matlab智能算法-基于LSTM网络及蜉蝣算法优化LSTM

基于深度学习中的LSTM(Long Short-Term Memory)网络,结合蜉蝣算法进行优化,进行了功率预测实验。通过对比未经优化的LSTM网络和经蜉蝣算法优化的LSTM网络的预测效果,以及计算均方根误差(RMSE)、平均绝对误差(MAE)、平均偏差误差(MBE)等指标,评估了两者的性能差异。 详见:https://mp.weixin.qq.com/s/4u9_vC1__gyNOjMRa4OniA

2024-06-28

Matlab图像处理-基于小波变换的数字图像水印嵌入和提取算法(GUI界面)

算法的主要流程包括Arnold置乱变换、二次离散小波变换以及奇异值分解。首先,对数字水印图像进行Arnold置乱变换,引入混沌因子以增强水印的安全性。接着,对原始图像进行二次离散小波变换,以获取更加丰富的频域信息。在接下来的步骤中,分别对置乱后的水印图像和原始图像小波变换的低频部分进行奇异值分解,并对两者的奇异值矩阵进行加性操作,从而实现水印的嵌入过程。 详见:https://mp.weixin.qq.com/s/cwLk2ivg8kqZ4Se-9Ym1ZQ

2024-06-28

AppDesigner语音滤波器设计-IIR、IIR、维纳滤波、卡尔曼滤波、自适应滤波

我们设计了一系列低通滤波器来进行语音去噪。这些滤波器包括IIR低通滤波器,如巴特沃斯、切比雪夫和椭圆型滤波器,以及FIR低通滤波器,采用不同的窗函数。我们还应用了维纳滤波、卡尔曼滤波和自适应滤波等技术来有效降低噪声水平。此外,我们设置了录音按钮,加噪按钮,音频播放按钮。 详见:https://mp.weixin.qq.com/s/rxha7ouYDhfSF3fQZ7HHBw

2024-06-28

Matlab通信原理-QPSK数字通信系统的仿真

信源为随机产生的0/1序列; 8倍过采样;画出发送序列时域波形和频谱。 进行根升余弦成型滤波,画出滤波后的时域波形及频谱图。 信道加入高斯白噪声:接收端匹配滤波,下采样后判决。画出接收端各处的时域波形和频谱。 改变信号和噪声功率的相对大小,观察并分析误码率的变化。画出误码率随信噪比变化的曲线。 详见:https://mp.weixin.qq.com/s/v91q-ruSoYmBVeqtis34tw

2024-06-28

Matlab界面设计-GUI实现动态绘制函数图像

功能如下: 1)点击 LineStyle 子菜单项可以设置曲线线型 2)点击 SelectCurve 子菜单项可以设置曲线类型 3)点击 Ball Color 子菜单项可以设置曲线颜色 4)点“开始”按钮,动态显示小球沿曲线运动; 5)点“停止”按钮,停止小球运动; 6)点“退 出”按钮,关闭图形用户界面; 详见:https://mp.weixin.qq.com/s/ByKLEOKDM71rsECSpxMSVQ

2024-06-28

Matlab图像处理大作业-GUI界面实现图像处理

a)图像的读取和保存; b)能够对图像进行任意亮度调整(可设置不同亮度系数) ; c)实现对图像进行任意角度的旋转(可设置不同角度值) ; d)实现对图像的直方图统计功能; e)对图像添加简单的椒盐噪声; d)使用中值滤波对图像进行滤波处理; 详见:https://mp.weixin.qq.com/s/26FULicHubHMJ6Qh2NHX7g

2024-06-28

Matlab界面设计-二维以及三维图形绘制GUI设计

建立一个图形界面来显示和处理二维、三维图形的颜色、线型以及数据点的图标,要求基本功能: (1) 建立一个主坐标系,用来显示要绘制的二维、三维图形. (2) 为图形界面加入两个菜单项,分别表示二维图形和三维图形.每一种图形不少于两种(具体函数自己决定),用子菜单控制. (3) 建立三个面板区域,一个用来选择线型,一个用来选择颜色一个用来选择数据点的图标,每一个面板区域里面包含若干按钮,按钮上的文本分别表示线型、颜色或数据点图标样式。单击不同的按钮则对应的图形的表示方式相应发生更改. 详见:https://mp.weixin.qq.com/s/9rniDQlLbRXOyy7Akaztnw

2024-06-28

Matlab数字调制解调-自定义函数实现BPSK和QPSK和QAM

(1)BPSK也叫2PSK,是一种数字调制技术,通常应用于数字通信系统中。 (2)QPSK也叫4PSK,也被称为四相位相移键控。 (3)16QAM是16正交幅相调制,一个符号代表4bit。 (4)64QAM是64正交幅相调制,属于调幅调制的一种。 详见:https://mp.weixin.qq.com/s/snbgLWbbVNhraRiDCUMB4w

2024-06-28

Matlab信号发生器-三角波、正弦波、方波

在 MATLAB GUI 界面中设计简单的信号波形显示程序,用于生成和显示正弦波、方波和三角波,并支持保存生成的数据。 GUI 初始化:创建一个 GUI 窗口,包含正弦波、方波、三角波三个按钮,以及用于控制波形参数的滑动条和编辑框。 正弦波按钮 (pushbutton1):当用户点击正弦波按钮时,会调用 pushbutton1_Callback 函数。通过滑动条和编辑框获取用户设置的幅值和频率。计算并绘制正弦波形,并显示在 GUI 窗口的图形区域。 方波按钮 (pushbutton2):当用户点击方波按钮时,会调用 pushbutton2_Callback 函数。通过滑动条和编辑框获取用户设置的幅值和频率。计算并绘制方波形,并显示在 GUI 窗口的图形区域。 三角波按钮 (pushbutton3):当用户点击三角波按钮时,会调用 pushbutton3_Callback 函数。通过滑动条和编辑框获取用户设置的幅值和频率。计算并绘制三角波形,并显示在 GUI 窗口的图形区域。 详见:https://mp.weixin.qq.com/s/yBrcEJ5gXgx7t3ZmvwSYzA

2024-06-28

Matlab信号处理-基于LSB和DCB音频水印嵌入提取算法

在多媒体中加人数字水印可以确立版权所有者、认证多媒体来源的真实性,提供关于数字内容的其他附加信息,以及确认所有权认证和跟踪侵权行为。它在篡改鉴定数据的分级访问、数据跟踪和检测、商业和视频广播、Iternet数字媒体的服务付费、电子商务认证鉴定等方面具有十分广阔的应用前景。数字水印技术自1993年被重新提出以来,已经引起工业界的浓厚兴趣,并日益成为国际上非常活跃的研究领域。然而随着数字水印技术的发展,人们发现了其更多更广的应用,许多应用是当初人们所没有预料到的。本文通过比较空间域和频率域的音频水印算法的容量和音质,以及提取准确率,分析了主观和客观指标。详细演示如下:https://mp.weixin.qq.com/s/hJI041XZKftgB0jOmmyHQg

2024-06-28

基于机器视觉的苹果中心花及边花识别方法Matlab图像处理

基于机器视觉技术,实现苹果中心花及边花识别,并将程序集合为GUI界面,在界面上完成相应的操作。实现了对图像进行预处理,分割出花心和边花,然后统计边花的数量。并且可以根据自己的需求和图像的特性来调整阈值和形态学核的大小,以获得最佳的分割结果。 详见:https://mp.weixin.qq.com/s/YyiY474UROqgh-8K9AOGHA

2024-06-28

基于 PCA-GA-BP 神经网络的安全风险评估

(1)获取数据,划分数据集,进行预处理 前90%的数据定为训练数据,后10%的数据定为测试数据。为了防止训练过程中出现发散,需要数据进行标准化 (2)主成分分析PCA 主成分分析( principal component analysis,PCA) 是在灰色关联分析的基础上,通过降低数据维数,排除相 互重叠的信息后,将多个指标转化为少数几个不相关 的综合指标的一种多元统计分析方法 (3)遗传算法优化 BP 神经网络 BP 神经网络是 1 种多层前馈神经网络,主要包括信号前向传递和误差反向传播[23],一般由输入层、隐含层和输出层构成。遗传算法( Genetic Algorithm,GA) 是模拟达尔文生物进化论中自然选择和遗传学机理的一种可以避免 训练陷入局部极值现象出现的计算模型。 详见:https://mp.weixin.qq.com/s/wax0-T1DoKlmeMhHNTqkCQ

2024-06-28

Matlab信号处理-钢琴模拟GUI加强版

上一篇内容给大家带来简易钢琴模拟器,但是只能单键播放,没法进行曲子的生成,今天小编为大家带来其加强版,既可以实现音乐弹奏,也可以实现音乐创作。要弹一曲子首先得看懂简谱。4/4小节:这意味着每小节有4拍,每个拍子是以4分音符(四分之一音符)为基准。2/4小节:这意味着每小节有2拍,每个拍子也是以4分音符为基准。1拍:表示一个完整的4分音符时间长度。1/2拍:表示一个2分音符(二分之一音符)时间长度,即为1拍时间的一半。1/4拍:表示一个八分音符(四分之一音符)时间长度,即为1拍时间的四分之一。2拍:表示一个2拍时间长度,有时在数字旁边带有一个横杠以示区分。4拍:表示一个4拍时间长度,有时在数字旁边带有三个横杠以示区分。带点的音符:表示该音符的时值增加原来长度的一半。 详见:https://mp.weixin.qq.com/s/FsntZuaTZAYdJaTRr8QhQQ

2024-06-28

Matlab实现钢琴演奏-信号处理钢琴GUI演绎夜的第七章

钢琴的音域几乎囊括了乐音体系中的全部乐音,是音域最广的乐器之一。架钢琴有 88 个琴键,通过按下琴键,牵动钢琴里面包着绒的小木,进而敲击钢丝弦产生振动,从而发出声音。因此,一个琴键对应着一个乐音,每个乐音都有固定的振动频率。利用 MATLAB设计音乐键盘 GUI 界面 实现夜的第七章片段 详见:https://mp.weixin.qq.com/s/0utEqs_s17jGS5DuWXpNMQ

2024-06-28

基于ABC-LSTM神经网络模型的跨境电商上市企业经营绩效评价研究

(1)获取数据,划分数据集,进行预处理 前90%的数据定为训练数据,后10%的数据定为测试数据。为了防止训练过程中出现发散,需要数据进行标准化 (2)搭建LSTM网络结构 lstm网络的训练是六个指标同时作为输入来训练的,也就是说不是每个指标单独训练,而是六个指标为整体(一个向量)来训练模型,这样更好的反应指标之间的相互联系。lstm隐藏层的个数为200个,学习算法为Adam学习算法,学习率为0.005,为了防止过拟合,迭代一半后降低学习率。迭代次数为250次。 (3)ABC算法来优化网络参数 迭代的过程中通过ABC算法来优化网络参数(lstm网络的权值和阈值参数)人工 蜂群算法的雇佣蜂数和观察蜂的数量都定为100只。 详见:https://mp.weixin.qq.com/s/ghNl_PhQw7lWvVLQN64hCA

2024-06-28

基于压缩感知的图像复原算法

读取图片,并转换成double数据类型。根据blkSize和sampleNum,把图片分割成blkSize * blkSize的小块,然后再每个小块上进行复原工作: (1)每个小块上进行采样(随机选择sampleNum的像素) (2)根据dct变换规则,构造变换矩阵(T矩阵)。 (3)通过交叉验证法和omp算法来计算出最优的λ值。 (4)通过omp算法(用求好的λ_opt),来计算alpha矩阵(dct变换结果) (5)通过反dct变换来得出复原图像,拼接每个小块的复原图像,得到完整的复原图像进行MedianFiltering 详见:https://mp.weixin.qq.com/s/8E6KmtZvT2NIN5ObnUs7wQ

2024-06-28

基于免疫理论的农产品物流外包风险预警模型研究

Step1:定义自我集合S:S={S1,S2,...,Sn},自我元素Si是一个个为 mxn的矩阵。 Step2:生成检测器集合D:基于自体半径产生初始检测器Di,逐一与自我集S进行匹配,匹配成功代表与自我元素相似,直接删除,反之不匹配的元素代表差异较大,将其加入到成熟检测器集合R中,如图4-1所示。检测器Di也用mxn 的矩阵表示。 Step3:通过不断地将R中的检测器与自我集S比较,监督S的变化。检测与S是否连续匹配,如果任何检测器都与S匹配,则一定有变化发生。 详见:https://mp.weixin.qq.com/s/PuRSocDwzJjzVwvkhzAkdw

2024-06-28

基于CNN的多输入单输出回归预测(Matlab-mlAPP界面)

当我们在Matlab的命令行输入guide后会出现警告: 以后的版本中将会删除 GUIDE。请改用 APPDESIGNER。也就是说之后GUI只能在低版本使用,高版本将会进行剔除,今天就给大家带来基于CNN多输入单输出回归预测的mlapp版本的界面。 1、项目介绍 基于CNN算法实现多输入单输出回归预测,16个输入指标,1个输出指标,共有1000多条训练数据,基于本项目,只需要将数据修改为你的数据,即可进行训练和预测。 2、包括内容 (1)excel数据文件。 2)基于CNN的多输入单输出回归预测(源码)的全部内容 (3)基于matlab的App Designer设计的界面,可进行参数的设置进行训练,并且可以进行预测。详见:https://mp.weixin.qq.com/s/VUDo44pcLG_WK5QJiIEqAw

2024-01-04

基于CNN的多输入单输出回归预测(Matlab-GUI界面)

为了更加方便地使用该CNN模型,我们基于 Matlab 平台开发了一个 GUI 界面。该界面设计简洁明了,操作简单直观, 1、项目介绍 基于CNN算法实现多输入单输出回归预测,16个输入指标,1个输出指标,共有1000多条训练数据,基于本项目,只需要将数据修改为你的数据,即可进行训练和预测。 2、内容介绍 (1)excel数据文件。 (2)基于CNN的多输入单输出回归预测(源码) (3)基于matlab的guide设计的GUI界面,可进行参数的设置进行训练,并且可以进行预测。详见:https://mp.weixin.qq.com/s/Sjkk01uITAlUfsPGURLTYw

2024-01-04

基于CNN的多输入单输出回归预测(Matlab源码)

卷积神经网络(Convolutional Neural Networks,CNN)是一种具有局部连接、权值共享等特点的深层前馈神经网络(Feedforward Neural Networks),是目前应用最广泛的模型之一。 1、项目介绍 基于CNN算法实现多输入单输出回归预测,16个输入指标,1个输出指标,共有1000多条训练数据,基于本项目,只需要将数据修改为你的数据,即可进行训练和预测。 2、内容介绍 (1)excel数据文件。 (2)可直接运行的main.m文件,该文件有详细的注释,可帮助你更快更好的理解CNN网络的运用,可输出绝对平均误差MAE、平均绝对误差百分比MAPE、均方根误差RMSE,以及预测误差图。 相比之前用的LSTM算法,CNN的方法效果更好. 详见:https://mp.weixin.qq.com/s/Ah9y1eRNm7qeC-wzZ2mlKA

2024-01-04

基于LSTM的多输入单输出回归预测(Matlab-mlAPP界面)

当我们在Matlab的命令行输入guide后会出现警告: 以后的版本中将会删除 GUIDE。请改用 APPDESIGNER。也就是说之后GUI只能在低版本使用,高版本将会进行剔除,今天就给大家带来mlapp版本的界面。 1、项目介绍 基于LSTM算法实现多输入单输出回归预测,16个输入指标,1个输出指标,共有1000多条训练数据,基于本项目,只需要将数据修改为你的数据,即可进行训练和预测。 2、包括内容 基于LSTM的多输入单输出回归预测(源码)的全部内容。基于matlab的App Designer设计的界面,可进行参数的设置进行训练,并且可以进行预测。详见:https://mp.weixin.qq.com/s/1Or7gNUYMUVndOb-o5aGYA

2024-01-04

基于LSTM的多输入单输出回归预测(Matlab-GUI界面)

本篇中,为了更加方便地使用该LSTM模型,我们基于 Matlab 平台开发了一个 GUI 界面。该界面设计简洁明了,操作简单直观,可以实现数据上传、模型参数设置、模型训练和预测功能。 1、项目介绍 基于LSTM算法实现多输入单输出回归预测,16个输入指标,1个输出指标,共有1000多条训练数据,基于本项目,只需要将数据修改为你的数据,即可进行训练和预测。 2、内容介绍 基于matlab的guide设计的GUI界面,可进行参数的设置进行训练,并且可以进行预测。 详见:https://mp.weixin.qq.com/s/pMtAGSfWm69hrObyygAtIg

2024-01-04

基于LSTM的多输入单输出回归预测(Matlab源码)

1、项目介绍 基于LSTM算法实现多输入单输出回归预测,16个输入指标,1个输出指标,共有1000多条训练数据,基于本项目,只需要将数据修改为你的数据,即可进行训练和预测。 2、内容介绍 可直接运行的LSTM.m文件,该文件有详细的注释,可帮助你更快更好的理解LSTM网络的运用,可输出绝对平均误差MAE、平均绝对误差百分比MAPE、均方根误差RMSE、相关系数R2,以及预测误差图。可进行预测的yuce.m文件,该文件通过选取excel的输入指标,进行预测。 详细介绍见:https://mp.weixin.qq.com/s/REmUv94yn4h2ZzW7IKEsUw

2024-01-04

AM调制解调详细完整实验报告及完整代码

AM调制解调详细完整实验报告及完整代码

2023-12-11

2ASK、2PSK、2FSK,调制代码,含报告原理代码

2ASK、2PSK、2FSK,调制代码,含报告原理代码 实现波形、频谱的绘制

2023-12-03

Matlab通信原理-正弦信号均匀量化PCM编解码

把输入信号的取值域按等距离分割的量化称为均匀量化。输入信号为正弦波信号,对给定正弦信号进行抽样后,均匀量化后,再进行编码。 正弦波信号频率f=10,正弦波幅度amp=10,取个周期的正弦波,时间间隔为0.0001,得到input_si;执行抽样,抽样频率fs=1000,得到sampled_signal;对sampled_signal采用64级均匀量化,得到quantiz_signal;对quantiz_signal采用自然二进制编码,得到Encoded data,进行译码,得到decoded_val。

2023-12-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除