- 博客(187)
- 资源 (11)
- 收藏
- 关注
原创 初五迎财神!——Python代码实现“元宝多多“,财神看了都说妙
初五迎财神!——Python代码实现"元宝多多",财神看了都说妙最后:小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!
2025-02-02 10:40:28
220
原创 2025年最值得考的10类证书!寒假可以准备起来了!
应届生”缺少工作经验,所以工作才难找, 但是,具有了相关的兼职实习经验,就成了应届生中的“有工作经验”的,具有优势,容易在找工作的时候脱颖而出。对于研究生来说,做过相关项目,撰写过有质量的相关论文,被 EI/SCI 收录,这些发表论文的证明,在寻求相关工作的时候会有极大的帮助。在大学期间努力获得各类具有含金量的证书和证明,展现的是你在大学期间不偷懒,不堕落,这代表了一种追求上进、不甘平凡的生活态度。另外,本科生或研究生在申请出国的时候,如果发表过高质量的论文,就更容易获得国外教授的青睐。
2025-02-02 09:24:19
1030
原创 教育部认可!56项全国大学生学科竞赛,含金量很高
中国大学生计算机设计大赛由教育部高等学校计算机类专业教学指导委员会、教育部高等学校软件工程专业教学指导委员会、教育部高等学校大学计算机课程教学指导委员会、教育部高等学校文科计算机基础教学指导分委员会、中国教育电视台联合主办,是全国普通高校学科竞赛排行榜榜单的赛事之一。研究生不得参加本竞赛。大广赛由全国大学生广告艺术大赛组委会、中国传媒大学主办,是迄今为止全国规模大、覆盖高等院校广、参与师生人数多、作品水准高、受高校教师欢迎、有较大社会影响力的全国性高校文科竞赛。校级初赛、省级复赛、全国总决赛,三级赛制、
2025-02-02 09:19:53
712
原创 Python实现聚类算法源代码获取——DBSCAN、DPC、FCM 和 Kmeans
它的核心思想是利用点的密度来判定核心点、边界点和噪声点,从而形成不同的簇。DPC(Density Peak Clustering)基于这样的假设:簇中心点具有较高的密度,并且与其他密度较高的点距离较远。FCM(Fuzzy C-Means)是一种基于模糊逻辑的聚类方法,允许一个点同时属于多个簇,并通过隶属度矩阵描述其从属关系。Kmeans 是一种基于划分的聚类算法,旨在最小化簇内样本与中心之间的平方误差。
2025-02-02 09:16:07
176
原创 时间序列预测创新代码——基于时间卷积网络TCN、小波卷积WTC、Transformer的时间序列预测
由两个小时级数据集(ETTh)和两个 15 分钟级数据集(ETTm)组成。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。
2025-02-02 09:14:09
920
原创 多模态情感分析自研代码——基于Transformer-Lstm-交叉注意力进行三模态情感分析
(1)下载地址html(2)模态介绍CMU-MOSI数据集和CMU-MOSEI数据集的模态有3种(语言,视觉,声音),数据集使用的是已对齐原始raw数据特征。(3)标签介绍既有情感标注又有情绪标注。情感标注是对每句话的7分类的情感标注,作者还提供了了2/5/7分类的标注。情绪标注是包含高兴,悲伤,生气,恐惧,厌恶,惊讶六个方面的情绪标注。数据集是多标签特性,即每一个样本对应的情绪可能不止一种,对应情绪的强弱也不同,在[-3~3]之间。(4)评价标准。
2025-02-02 09:10:56
1388
原创 [HSRC2016]遥感图像舰船旋转目标检测数据集——HSRC2016一类、HSRC2016四类
是西北工业大学采集的用于轮船的检测的数据,包含4个大类19个小类共2976个船只实例信息。数据集所有图像均来自六个著名的港口,包括海上航行的船只和靠近海岸的船只,船只图像的尺寸范围从300到1500,大多数图像大于1000x600。注:HSRC数据集总数为1680张,但是只有1061张为有效进行标注的图像。在训练集、验证集和测试集中分别包含436、181和444张图像。设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!分四个类别:军舰、民船、航母、潜艇。
2025-02-02 09:07:02
289
原创 GNN-Attention——基于动态图神经网络GNN和注意力机制Attention的时间序列预测
在此基础上,采用 Gumbel-Softmax 技术生成动态的邻接矩阵,学习时间序列的动态图结构。最终,通过 GraphSAGE 聚合图节点的局部特征,生成时间序列的预测值。它的目标是基于查询(Query)、键(Key)和值(Value)之间的相似性计算加权输出。GNN 的核心在于消息传递机制(Message Passing),即通过节点及其邻居之间的信息交换来更新节点表示。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。
2025-02-02 09:03:57
930
原创 基于PyQt5打造的实用工具——PDF文件加图片水印,可调大小位置,可批量处理!
随着PDF文件在信息交流中的广泛应用,用户对图片水印的添加提出了更高要求,既要美观,又需高效处理批量文件。此功能是为了让图片水印能够更美观的添加到pdf中,具体参数包括:图片缩放参数(0-5)、图片右移参数(0-width)、图片下移参数(0-height),初始默认的缩放参数为1,其他参数为0,位置为左上角。次功能是针对大批量文件添加而设计的,经过上面的大小位置调整,得到了相关参数,在这一步只需要导入pdf所在的文件夹和水印图片,然后点击“批量转换”,等待转换完毕即可。在页面2中会记录当前参数。
2025-02-02 08:56:35
603
原创 大模型QLoRA微调——基于Qwen2-7B的自动化病历摘要生成系统
该系列模型包括5个尺寸的预训练和指令微调模型:Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B以及Qwen2-72B。为此,本项目基于 Qwen-7B大语言模型,通过QLoRA微调,使其从医疗文档中识别并提取这些信息。QLoRA 在不影响模型性能的前提下,将模型参数压缩为 4-bit 格式,并结合 LoRA 微调技术,进一步减少显存占用和计算资源消耗。是一种低秩微调方法,用于在大模型中插入低秩矩阵,冻结原始模型参数,只微调插入的权重部分,显著减少了训练参数。
2024-12-17 11:01:46
1329
原创 Matlab数字信号处理——基于SVD奇异值分解的音频水印嵌入提取系统
在较好的声学环境中翻录音频信号可使翻录音频和原始音频在听觉上难以分辨。本文设计了一种基于奇异值分解的音频水印算法。该方法通过将原始音频信号分块,利用SVD分解技术将水印信息嵌入到音频信号中,并在需要时提取嵌入的水印信息。奇异值分解(SVD)是一种经典的矩阵分解技术,广泛应用于信号处理、机器学习、数据压缩和图像处理等领域。SVD 将一个矩阵分解为三个特殊矩阵的乘积,提供了该矩阵在不同线性空间中的最优表示形式。(1)鲁棒性:基于 SVD 的水印嵌入具有较强的鲁棒性,能够抵抗常见的音频信号处理操作。
2024-12-17 10:35:47
372
原创 大模型微调bitsandbytes报错(Windows有关cuda版本等)
设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!大语言模型(LLaMa、qwen等)进行微调时,考虑到减少显存占用,会使用如下方式加载模型。小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、
2024-12-13 10:38:30
670
原创 Matlab数字信号处理——C-PML一维弹性波方程的数值模拟与边界处理
PML 技术最初由 Bérenger (1995) 用于解决电磁波模拟中的边界问题,但其在处理弹性波,尤其是入射角较大波动时,表现欠佳。C-PML 通过引入卷积项,并借助记忆变量和递归关系高效计算该项,进一步增强了边界吸收能力。接收器记录的地震波形表明,该方法能准确模拟波的传播特性,同时显著抑制边界反射引起的伪影。在边界区域,速度和应力通过额外的 C-PML 参数调整,确保波动在传播到边界时被平滑吸收。在网格边界的 C-PML 区域,通过引入记忆变量和阻尼参数,吸收波动能量以减少边界反射。
2024-12-13 10:34:48
736
原创 Matlab数字信号处理——音频信号处理与分析GUI
实现功能有回响、变声、倒放、变速、音量调整、加噪、设计 FIR和 IR 滤波器实现去噪功能(高通低通带通带阻),并且在时域波形图和频域波形展示变化。滤波器包括各种参数的选择、滤波器结构和类型的选择等。同时GUI上还包含打开、播放、保存、退出功能。②下拉框选择处理方式,选择后,会生成新的波形和频谱,并播放新的声音(务必要打开电脑声音),点击停止播放则会停止。①导入音频,选取wav格式的音频文件,同时会在右边生成波形和频谱。(3)保存和退出:保存的是处理后的音频,在文件夹“保存的音频”存储。
2024-11-29 22:08:24
674
原创 Matlab图像处理——基于内容的图像检索GUI
不变矩能够在图像经历几何变换时保持不变,提供图像形状信息,包括零阶矩到七阶矩,它们通过计算图像的灰度值和位置来构成强大的形状特征向量,用于图像匹配和识别。HSV色彩空间通过色调、饱和度和亮度的低阶矩(如均值和方差)捕捉颜色分布的统计特性,形成包含颜色信息的特征向量,对基于颜色的图像分析至关重要。频谱法通过傅里叶变换、小波变换和局部二值模式等技术分析图像的频率成分,提取纹理特征,如能量、对比度、均匀性和熵,对纹理分类和分析具有重要价值。小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、
2024-11-29 22:05:25
667
原创 Java后端开发,应届生孔乙己的故事!
他对人说话,总是满口的“高并发,高可用,高性能”,教人半懂不懂的。”接连便是难懂的话,什么“开源精神”,什么“性能优化”之类,引得众人都哄笑起来,店内外充满了快活的空气。孔乙己刚用指甲蘸了酒,想在柜上手撕代码,见我毫不热心,便又叹一口气,显出极惋惜的样子。虽然间或没有现钱,暂时记在粉板上,但不出一月,定然还清,从粉板上拭去了孔乙己的名字。孔乙己喝过半碗酒,涨红的脸色渐渐复了原,旁人便又问道,“孔乙己,你当真会Java么?
2024-11-29 22:03:11
275
原创 Python图像处理——Python转换h264格式视频
设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、
2024-11-29 22:02:02
756
原创 KAN-Transfomer——基于新型神经网络KAN的时间序列预测
KAN 的核心是学习给定问题的组合结构(外部自由度)和单变量函数(内部自由度)。这使得 KAN 不仅可以像 MLP 一样学习特征,还可以非常准确地优化这些学习到的特征。KAN 利用了样条曲线和 MLP 的优点,同时避免了它们的缺点。样条对于低维函数来说是准确的,并且可以轻松地进行局部调整,但会受到维数灾难的影响。通过结合这两种方法,KAN 可以比单独的样条曲线或 MLP 更有效地学习和准确地表示复杂函数。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。
2024-11-29 22:00:30
1544
原创 AI实践项目——图片视频自动上色系统,让旧照片焕然一新
一种用于用户引导图像着色的深度学习方法。该网络不是使用手动定义的规则,而是通过融合从大规模数据中学习到的低级线索和高级语义信息来传播用户编辑。一种前向encoder+ 反向decoder+ab概率分布预测的网络结构,首先预测出ab通道的概率分布,之后转成ab色道具体值。在图片处理的世界中,AI不仅用于识别和分析,还可以赋予灰度照片色彩,为其注入新的生命。今天,我们将探讨一种通过深度学习模型为灰度图片上色的技术。基于gradio设计的交互界面,可以实现图片/视频导入、不同模型测试对比。
2024-11-29 21:57:18
409
原创 Python图像处理——基于ResNet152的人脸识别签到系统(Pytorch框架)
将数据按照8:2分成训练集和验证集,保证模型在训练阶段和验证阶段都能得到合理的评估。选用了ResNet152模型,并根据数据集的类别数量替换了最后的分类层,以确保模型可以识别多个人脸类别。如果人脸被识别,系统将在界面右侧显示签到人的信息和签到时间。本次使用明星做为数据集,首先编写爬虫函数,根据关键字爬取对应的明星,爬取结果保存至data文件夹,并以标签名作为文件名。训练结束后,界面将显示最佳准确度,并会自动保存最佳模型权重。主界面如图所示,具体包括模型训练、摄像头开关、图片导入、签到、清空。
2024-10-26 08:27:23
661
原创 Python数字图像处理——基于SIFT特征提取的图像拼接算法(暴力匹配、knn匹配和hist匹配)
本文通过Python实现基于SIFT特征提取的图像拼接算法,包括三种匹配策略:暴力匹配、KNN(k近邻)匹配和hist直方图的特征匹配。它能够在图像中找到具有独特性和稳定性的关键点,并通过计算这些关键点的局部特征描述符来进行图像匹配。在图像拼接任务中,SIFT能够从两幅图像中提取关键点和特征描述符,然后通过匹配这些特征来寻找图像的重叠区域。③ 单应矩阵计算:利用匹配的特征点对,计算图像之间的单应矩阵,从而确定两幅图像之间的几何关系。④ 图像拼接:通过透视变换对图像进行对齐,并进行图像的无缝拼接。
2024-10-26 08:24:52
702
原创 Matlab数字图像处理——基于形态学处理的硬币计数系统(含m文件和GUI)
接着,通过形态学操作,估计并去除图像背景,从而增强硬币与背景的对比度。在这里,滤波的主要作用是去除图像中的高频噪声,而形态学操作则帮助我们进一步分离目标区域和背景区域。接下来,进行二值化,将图像转换为黑白两色,方便后续的轮廓检测。最后,通过圆形检测获得硬币的半径后,根据硬币的半径与平均值的比例,推断出不同面额的硬币个数。最终,通过累加各个硬币的面额,输出硬币的总数和总额。通过灰度化、形态学操作、滤波、二值化、边缘检测等,来识别硬币的轮廓并计算其半径。根据硬币的大小推断其面额,输出硬币的总数和总额。
2024-10-26 08:22:49
686
原创 Matlab数字信号处理——基于改进小波变换的图像去噪方法(7种去噪算法)
在传统小波去噪的基础上,结合离散余弦变换(DCT)的优势,对信号进行进一步处理,以提高去噪效果,特别适用于周期性或具有强局部特征的信号。该方法利用小波变换分离出信号中的噪声成分,并通过设置合适的阈值对小波系数进行收缩,保留主要信息的同时,去除噪声。通过引入最大熵原理,该算法在去噪过程中对信号进行最优估计,保持信号的信息量最大化,从而实现平衡信号和噪声的去除。模极大值法通过分析小波变换中信号的极大值点,提取信号的结构特征,进而有效去除噪声,并且能保留信号的边缘信息。
2024-10-26 08:20:26
3077
2
原创 LSTM-EAAtention-Transfomer——基于有效附加注意力的时间序列预测
在自然语言处理(NLP)领域,传统的加性注意力机制通过元素乘法而非点积来捕捉令牌间的成对交互,以获取全局上下文信息。这种机制依赖于三个关键的注意力分量——查询(Q)、键(K)和值(V)——来编码输入序列中上下文信息的相关性得分。这种方法被称为有效的附加注意力,它不仅提高了推理速度,而且生成了更强大、更丰富的上下文表示。在传统的RNN中,由于梯度消失的问题,网络往往难以捕捉序列中的长期依赖关系。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。
2024-10-08 08:52:08
1980
原创 ModernTCN:用于一般时间序列分析的现代纯卷积结构
文章的ModernTCN能够获得比以往基于卷积的方法更大的ERF。Groups是群组卷积中的组数。ModernTCN,一种现代纯卷积结构,它在多个主流时间序列分析任务上取得了与最先进的基于Transformer和MLP的模型相媲美的性能,同时保持了卷积模型的效率优势。:通过使用大核心尺寸而不是堆叠更多小核心,ModernTCN显著扩大了ERF,这有助于更好地捕捉时间序列数据中的长期依赖性。借鉴了Transformer中的架构设计,ModernTCN采用了深度卷积和逐点卷积的组合,以提高模型的表示能力。
2024-10-08 08:46:48
578
原创 TCN-GRU-Transformer时间序列预测(多输入单预测)——基于tf框架
TCN用于捕捉时间序列中的长期依赖性,而GRU层则帮助模型理解序列的动态变化,注意力机制则进一步提升了模型对关键特征的关注度。TCN模块包括卷积层、批标准化层和Dropout层,并利用残差连接来保留有用的信息。注意力模块通过对序列数据进行加权处理,进一步提高了模型对时间序列中重要特征的关注度。在测试集上进行预测后,我们计算了模型的评价指标,包括R²、均方根误差(RMSE)和平均绝对误差(MAE),并将预测结果与真实值进行了可视化对比。适合各种时间序列预测时间序列预测。2.多时间步预测,单时间步预测。
2024-10-08 08:43:39
630
原创 LSTM-Transformer时间序列预测(单输入单预测)——基于Pytorch框架
在我们的模型中,我们使用了Transformer编码器来提取输入序列中的特征。Transformer的核心优势在于其自注意力机制,能够捕捉序列中不同位置之间的依赖关系。在我们的模型中,LSTM解码器负责根据Transformer编码器提取的特征进行预测。单输入单输出预测,适合风电预测,功率预测,负荷预测等等。由于Transformer本身不具备处理序列位置信息的能力,我们使用了位置编码来为每个输入数据点添加位置信息。此外,我们还绘制了预测结果与真实值的对比图,以直观展示模型的预测性能。
2024-10-08 08:40:04
1916
原创 TCN-Transformer时间序列预测(多输入单预测)——基于Pytorch框架
卷积结束后,由于padding 的原因,卷积之后的新数据尺寸BB会大于输入数据的尺寸A,因此只保留输出数据中的前面A个数据。另外,TCN中并不是每次卷积都会扩大一倍的 dilation,而是每两次扩大一倍的 dilation。我们的目标是预测 amount(金额),这对于股票交易和投资决策至关重要。卷积 + 修改数据尺寸 + ReLU + Dropout。卷积 + 修改数据尺寸 + ReLU + Dropout。pre_close(前收盘价)volume(成交量)close(收盘价)amount(金额)
2024-10-08 08:36:50
1437
原创 BiGRU-Transformer时间序列预测(多输入单预测)——基于Pytorch框架
在模型评估阶段,我们将测试集的数据输入训练好的模型,得到预测结果。我们使用均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R²)等指标评估模型性能。接着,通过设置历史步长和未来预测步长,生成适用于训练和测试的数据集。在训练过程中,每隔10个epoch打印一次损失,以监控模型的训练情况。本文将介绍一种基于Transformer和BiGRU(双向门控循环单元)的混合模型及其在时间序列预测中的应用。本模特适用于多输入单输出预测,适合风电预测,功率预测,负荷预测等等。
2024-10-08 08:34:14
1008
原创 Seaborn数据可视化指南,附Python代码!!!
小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!Seaborn 作为一个基于 Matplotlib 的高级数据可视化库,以其简洁的语法和强大的功能,成为众多研究者和数据科学家的首选工具。
2024-10-08 08:34:01
430
原创 基于SHAP进行特征选择和贡献度计算——可解释性机器学习
SHAP 的名称源自合作博弈论中的 Shapley 值,它构建了一个加性的解释模型,将所有特征视为“贡献者”。通常从预测正向结果的角度考虑模型的预测结果,所以会拿出正向结果的SHAP值(拿出shap_values[1])。在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer(例如deep、gradient、kernel、tree、sampling等),以tree为例,它支持常用的XGB、LGB、CatBoost等树集成算法。
2024-08-25 08:57:02
2539
1
原创 iTransformer时序模型改进——基于SENet和TCN的倒置Transformer,性能暴涨
通过融合离散余弦变换(DCT)、通道注意力机制(SENet)与时间卷积网络(TCN),实现了对时间序列数据的高效多维特征提取。在此框架中,DCT专注于频域特征的捕捉,而通道注意力机制则进一步强化了对关键特征的识别与选择。最终,将这些经过优化的特征输入到iTransformer网络进行进一步处理,不仅能够显著提高预测的准确性,同时也提高了预测过程的效率。:经过DCT、通道注意力机制和TCN处理后的特征输入到iTransformer网络,进一步提高预测的准确性和效率。中的对比方法,MSE和MAE值越小越好。
2024-08-25 08:56:41
1014
原创 加速网络收敛——BN、LN、WN与selu
最理想的结果就是让每一层输出的激活值为零均值、单位方差,从而能够使得张量在传播的过程当中,不会出现covariant shift,保证回传梯度的稳定性,不会有梯度爆炸或弥散的问题。通过对weight进行normalization,可以保证在梯度回传的时候,如果梯度越noisy(梯度越大),v的norm就越大,那么g/||v||就越小,从而就会抑制梯度。BN对某一层激活值做batch维度的归一化,也就是对于每个batch,该层相应的output位置归一化所使用的mean和variance都是一样的。
2024-07-31 21:32:20
452
原创 时间序列异常值检验替换——基于Hampel滤波器
本文将深入研究Hampel滤波器的原理和数学推导,并通过实际代码演示其在异常值处理中的应用。Hampel滤波器是一种基于中值和中值绝对偏差(MAD)的滤波器,旨在识别和去除时间序列数据中的异常值。Hampel滤波器通过使用中值和MAD,适应异常值的存在,提高异常值检测的准确性。最后,我们展示Hampel滤波器处理后的数据,并通过可视化对比原始数据,特别突出异常值的识别和去除效果。首先,我们生成一个包含异常值的正弦波数据,并通过可视化展示原始数据,感受一下异常值在数据集的呈现。
2024-07-31 21:18:44
751
原创 图像卷积、步长、填充、特征图、多通道卷积、权重共享、感受野、池化
用一个相同的卷积核对整幅图像进行进行卷积操作,相当于对图像做一次全图滤波,符合卷积核特征的部分得到的结果比较大,不符合卷积核特征的部分得到的结果比较小,因此卷积操作后的结果可以较好地表征该区域符合卷积核所描述的特征的程度。上图中,Conv2中的像素点为5,是由Conv1的2×2的区域得来的,而该2×2区域是由原始图像的5×5区域计算而来,因此该像素的感受野是5×5。上图展示的是单个图像的卷积,而一个卷积神经网络,其每一层都是由多个图组成的,将其成为特征图或者特征平面,如下图所示。
2024-06-30 20:49:31
1209
1
原创 多模态情感分析——基于交叉多头注意力CMA进行图文多模态融合(含MVSA数据集)
由两个独立的数据集组成,分别是MVSA-Single数据集和 MVSA-Multi数据集,前者的每条图文对只有一个标注,后者的每条图文对由三个标注者给出。删除 MVSA-Single 数据集中图片和文字标注情感的正负极性不同(存在positive和negative)的图文对,剩余的图文对中,如果图片或者文本的情感有一者为中性(neutral),则选择另一个积极或者消极的标签作为该图文对的情感标签,最终得到4511个图文对。图像处理模块采用预训练的ResNet系列模型,提取图像特征,并进行特征变换。
2024-06-30 20:46:10
2309
1
原创 Python图像处理——基于Pytorch框架ResNet152特征提取的MNIST手写数字识别
小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!
2024-06-12 23:11:59
680
原创 Matlab图像处理——细胞图像的分割和计数显示
它的主要思想是通过使用滑动窗口将信号或图像中的每一个数据点用其邻域内所有数据点的中值来替换,从而有效地去除脉冲噪声(即椒盐噪声)。使用MATLAB编写的细胞图像分割及计数系统,实现了对图像内细胞的计数,以及对每个细胞周长和面积的测量,并分别展示了分割后的每个细胞的图像。实验步骤共分为图像预处理、图像预分割、空洞填充、黏连细胞分割、细胞个数统计、细胞特征统计及显示。对分割后的二值图,实施开运算,充细胞中的孔洞,使轻微粘连细胞分开及细小的细胞消失。进行二值化预分割,将细胞作为前景分割出来。
2024-06-12 23:10:56
1501
原创 YOLOv10代码详细介绍(附录训练教程和权重)
YOLOv10 是清华大学研究人员在 UltralyticsPython 清华大学的研究人员在 YOLOv10软件包的基础上,引入了一种新的实时目标检测方法,解决了YOLO 以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10 在显著降低计算开销的同时实现了最先进的性能。并用大量实验证明,YOLOv10 在多个模型尺度上实现了卓越的精度-延迟权衡。YOLOv10与v8结构相比,从结构上看添加了PSA和在C2f结构中添加了CBI结构,去掉了NMS。
2024-05-28 16:40:01
7157
1
原创 探寻导师:2024年最新研究生导师评价汇总
因此,特地搜集了五份导师评价,其中包括以前被迫删除的信息,力求为考生提供最全面、最真实的参考。当然,需要注意的是,由于信息的来源不尽相同,无法确保每一个学校每一位老师都有详细评价,但尽可能提供了多样化的信息,希望能够满足不同考生的需求。导师不仅关系到研究生的学术成长,还直接影响到未来的职业发展。为了帮助广大考生更好地选择导师,整理了最新最全的研究生导师评价,及配套查询网站。,助力实现考研的梦想,开启人生的新篇章。只有在与导师的良好互动中,学生才能真正实现自己的学术梦想,走上人生的成功之路。
2024-05-28 16:36:48
1708
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人