[size=medium]问题描述:
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入
每个用例包含二个整数M和N。0<=m<=10,1<=n<=10。0<=n<=10<=m<=10
1.当盘子数多于苹果数时:则必定有n-m个盘子是空着的。
f(m,n)=f(m,m);
2.当盘子数少于苹果数时(n<=m):
又分两种情况:
<1>当有空盘子时:即至少有一个盘子是空的:f(m,n)=f(m,n-1)
<2>没有空盘子时:即所有的盘子都有苹果,从每个盘子里拿掉一个苹果对结果没有影响:f(m,n)=f(m-n.n)
因此所有可能的情况为f(m,n)=f(m,n-1)+f(m-n.n)。
我们知道当m=0时,只有一种放法,当n=1时只有一种放法。[/size]
递归法:
把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
输入
每个用例包含二个整数M和N。0<=m<=10,1<=n<=10。0<=n<=10<=m<=10
1.当盘子数多于苹果数时:则必定有n-m个盘子是空着的。
f(m,n)=f(m,m);
2.当盘子数少于苹果数时(n<=m):
又分两种情况:
<1>当有空盘子时:即至少有一个盘子是空的:f(m,n)=f(m,n-1)
<2>没有空盘子时:即所有的盘子都有苹果,从每个盘子里拿掉一个苹果对结果没有影响:f(m,n)=f(m-n.n)
因此所有可能的情况为f(m,n)=f(m,n-1)+f(m-n.n)。
我们知道当m=0时,只有一种放法,当n=1时只有一种放法。[/size]
递归法:
int function(int m ,int n){
if(m==0||n==1){
return 1;
}
if(m<n){
return function(m,m);
}
if(m>n){