【动态规划,背包】【NOIP 2006】金明的预算方案
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第jj件物品的价格为v [ j],重要度为w [j],共选中了k件物品,编号依次为j_1,j_2,…,j_kj 1 ,j 2 ,…,j k
,则所求的总和为:v_[j_1]*w_[j_1]+v_[j_2] *w_[j_2]+ …+v_[j_k] *w_[j_k]
请你帮助金明设计一个满足要求的购物单。
输入格式
第1行,为两个正整数,用一个空格隔开:
Nm (其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。) 从第2行到第m+1行,第j行给出了编号为j−1的物品的基本数据,每行有3个非负整数
vpq (其中v表示该物品的价格(v<10000),p表示该物品的重要度(1−5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出格式
一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
输入输出样例
输入 #1 复制
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出 #1 复制
2200
说明/提示
NOIP 2006 提高组 第二题
分析
这个题的想法有五个:
1.不选,然后考虑下一个
2.选,只选这个主件
3.选这个主件,和附件1
4.选这个主件,和附件2
5.选这个主件,和附件1和附件2.
其它代码有注释。。。。
代码
#include<iostream>
using namespace std;
int n,m;
int v,p,q;
int main_v[62],main_p[62]; //主件,v 价格, p 价格与重要度乘积的总和
int mainx_v[62][3],mainx_p[62][3]; //附件,前一维表示是哪个主件的,第二维是1代表附件1 ,2代表附件2 。。p是乘积
int dp[200000];
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
cin>>v>>p>>q;
if(q ==0){
main_v[i] = v;
main_p[i] = p*v;
}else{
mainx_v[q][0] ++;
mainx_v[q][mainx_v[q][0]] =v; //这次时[q][1] 如果下次还有附件那就时[q][2]了
mainx_p[q][mainx_v[q][0]] =p *v;
}
}
for(int i=1;i<=m;i++){
for(int j=n;j>= main_v[i];j--){
dp[j] = max(dp[j],dp[j - main_v[i]] + main_p[i]); //1.不选,然后考虑下一个。2.选,只选这个主件
if(j>=main_v[i]+mainx_v[i][1]){ //3选这个主件,和附件1
dp[j] = max(dp[j],dp[j - main_v[i] - mainx_v[i][1]] + main_p[i] + mainx_p[i][1]);
}
if(j>=main_v[i]+mainx_v[i][2]){ //4.选这个主件,和附件2
dp[j] = max(dp[j],dp[j - main_v[i] - mainx_v[i][2]] + main_p[i] + mainx_p[i][2]);
}
if(j>=main_v[i]+mainx_v[i][1] + mainx_v[i][2]){ //5.选这个主件,和附件1和附件2.
dp[j] = max(dp[j],dp[j - main_v[i] - mainx_v[i][1] - mainx_v[i][2]] + main_p[i] + mainx_p[i][1] + mainx_p[i][2]);
}
}
}
cout<<dp[n]<<endl;
return 0;
}