Series与DataFrame的增删改查

涉及到:pandas、numpy

1.Series的创建

(1)空Series:

import pandas as pd
s=pd.Series()
print(s)

(2)字典dict、数组ndarray、标量(纯数字之类的)都可以创建

2.DataFrame的增删改查

(1)列索引操作

import pandas as pd
data=[1,2,3]
df=pd.DataFrame(data,index=['a','b','c'])
#列的增加
df['col1']=('m','n','k')
df['col2']=(0,6,9)
#指定位置增加列
df.insert(1,column='col3',value=[0,0,2])
#指定查看某个值
print(df['col2'])
#删除某列
df.pop('col1')
del df['col2']
print(df)

(2)行索引操作

 标签索引loc与默认索引iloc的区分:http://t.csdnimg.cn/X9jyY

import pandas as pd
df1=pd.DataFrame([1,2,3])
df2=pd.DataFrame([4,5,6])
#在df的最后增加一个dict
dict={'a':'0'}
df2.loc[len(df2)]=dict
#转置
print(df2.T)
'''
#concat方法连接
df=pd.concat((df1,df2),ignore_index=True)
print(df)
'''
#删除并修改原df
df2.drop(0,inplace=True)

3.常用函数

df.head(n):显示前n行                 df.tail(n):显示后n行                 df.info():显示信息

df.describe():显示统计信息(平均数之类的)                 df.shape():显示df的行数列数

df.mean():求平均值                 df.mode():求众数                 df.median():求中位数

聚合类函数:sum、count、max、min、abs等,使用时需指明是df的行or列,默认返回行的聚合(即axis=0)

使用时:df.sum(axis=1) ——>求第二列的总和                 df.sum()——>求各行各自的总和   

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值