涉及到:pandas、numpy
1.Series的创建
(1)空Series:
import pandas as pd
s=pd.Series()
print(s)
(2)字典dict、数组ndarray、标量(纯数字之类的)都可以创建
2.DataFrame的增删改查
(1)列索引操作
import pandas as pd
data=[1,2,3]
df=pd.DataFrame(data,index=['a','b','c'])
#列的增加
df['col1']=('m','n','k')
df['col2']=(0,6,9)
#指定位置增加列
df.insert(1,column='col3',value=[0,0,2])
#指定查看某个值
print(df['col2'])
#删除某列
df.pop('col1')
del df['col2']
print(df)
(2)行索引操作
标签索引loc与默认索引iloc的区分:http://t.csdnimg.cn/X9jyY
import pandas as pd
df1=pd.DataFrame([1,2,3])
df2=pd.DataFrame([4,5,6])
#在df的最后增加一个dict
dict={'a':'0'}
df2.loc[len(df2)]=dict
#转置
print(df2.T)
'''
#concat方法连接
df=pd.concat((df1,df2),ignore_index=True)
print(df)
'''
#删除并修改原df
df2.drop(0,inplace=True)
3.常用函数
df.head(n):显示前n行 df.tail(n):显示后n行 df.info():显示信息
df.describe():显示统计信息(平均数之类的) df.shape():显示df的行数列数
df.mean():求平均值 df.mode():求众数 df.median():求中位数
聚合类函数:sum、count、max、min、abs等,使用时需指明是df的行or列,默认返回行的聚合(即axis=0)
使用时:df.sum(axis=1) ——>求第二列的总和 df.sum()——>求各行各自的总和