AI绘画工作流,WebUI与ComfyUI怎么选?

当一句话就能变成一幅画,AI绘画从专业圈子火到了普通人中。🔥

在当今数字化的时代,AI 绘画正以惊人的速度崛起,并向各行各业渗透。

但是,铺天盖地的AI行业资讯,隔一段就会出现的“颠覆性”技术突破,看都看不过来的AI工具…让人眼花缭乱,并且逐渐焦虑。

对于普通人来说,如何在AI浪潮涌来的当下选择正确的AI工具?又该从哪学?怎么学?

1

工具的选择

进行 AI 绘画学习,很多人直接选择了开源免费的Stable Diffusion(简称SD)。

基于SD图像生成模型而衍生的web图形界面工具有很多,但目前运用比较多的主要是两种工具:一是大名鼎鼎的WebUI,另一个是从去年下半年开始火起来的ComfyUI

WebUI界面

VS

ComfyUI界面

▲点击图片放大查看

### ComfyUI用于AI绘画的教程示例 #### 安装ComfyUI 对于希望利用ComfyUI进行AI绘画的用户来说,安装过程是一个重要的起点。由于ComfyUI具有较高的上手难度,建议具备一定的Stable Diffusion及相关扩展能力的理解基础[^2]。 #### 配置环境 在开始前,确保计算机环境中已正确配置Python其他必要的依赖库。这通常涉及到设置虚拟环境来隔离项目所需的特定版本软件包。 #### 下载并启动ComfyUI 访问官方GitHub仓库获取最新版源码文件,并按照README.md中的指示完成本地部署工作。一般情况下,通过命令行工具执行如下操作即可快速搭建起开发框架: ```bash git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI pip install -r requirements.txt python main.py --listen --port 8090 ``` 上述脚本会克隆仓库到当前目录下,进入该目录后依据需求列表自动下载所需第三方模块;最后一条语句则用来监听指定端口等待HTTP请求连接。 #### 探索界面布局核心组件 初次打开Web UI页面时可能会感到陌生,但不必担心——这里列举了一些常用功能区及其作用简介: - **Nodes面板**:提供多种预设节点供拖拽构建图像处理流程图; - **Properties窗口**:调整定节点参数项; - **Canvas区域**:可视化编辑空间,在此链接不同类型的算子形成复杂管线结构; - **Output视窗**:实时查看渲染进度及最终成果展示。 #### 实战演练:创建简单绘图流水线 下面给出一段具体的实例代码片段作为入门指南的一部分,演示怎样组合基本构件实现风格迁移效果转换: ```json { "class_type": "KSampler", "inputs": { "model": [ "CheckpointLoaderSimple", 0, "result" ], "positive": [ "CLIPTextEncode", 0, "conditioning" ] } } ``` 这段JSON定义了一个采样器节点(KSampler),它接收来自其他两个上游单元传递过来的数据流分别代表模型权重加载结果(CheckpointLoaderSimple)以及正向提示词编码(CLIPTextEncode)[^3]。 #### 扩展阅读深入学习资源推荐 随着熟练度提升,不妨尝试探索更多高级特性比如动画差异(AnimateDiff)插件支持等功能点。这类附加组件能够极大程度丰富创作手段,满足个性化表达诉求的同时也为作品注入灵魂。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值