OpenCV学习篇之五 使用指针遍历图像

程序功能:
对图像进行颜色缩减

程序:

// learn_colorReduce.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace std;
void colorReduce(cv::Mat &image ,int div=128)
{
    int nl = image.rows;//行数
    int nc = image.cols;//列数

    if(image.isContinuous())
    {
        //当图像没有额外的填补像素时
    nc=nc*nl;//
    nl=1;//一维数组
    }

    int n= static_cast<int>(log(static_cast<double>(div)/(log(2.0))));//用来对像素值进行取整的二进制掩模

    uchar mask = 0xff<<n;//

    for(int j = 0; j < nl; j++)
    {
       uchar* data=image.ptr<uchar>(j);//第j行的地址

       for(int i = 0; i < nc; i++)
       {
         //处理每个像素
           *data++=*data&mask + div/2;
           *data++=*data&mask + div/2;
           *data++=*data&mask + div/2;

       }//for i
    }//for j


}

int _tmain(int argc, _TCHAR* argv[])
{
    cv::Mat image1;
    //cv::Mat image2;



    image1= cv::imread("D:\\image\\boldt.jpg");
        if (!image1.data)
        {
         return 0;
        }

         cv::namedWindow("输入图像");
         cv::namedWindow("输出图像");

         cv::imshow("输入图像",image1);

         colorReduce(image1);

         cv::imshow("输出图像",image1);

    cv::waitKey();
    return 0;
}

程序运行结果:
原图
图1 颜色缩减前的图像

颜色缩减后的图像
图2 颜色缩减后的图像

程序分析:
彩色图像由三个通道组成,每一个通道对应三原色(红、绿、蓝)之一的强度。由于每个强度值都是用一个8位unsigned char表示,所以全部可能得颜色数目为256*256*256,大于1600万个。为了降低分析的复杂度,降低图像中的颜色数目有时候是有用的。一个简单的办法就是将RGB空间划分为同等大小的格子。例如,将每一个维度的颜色降低为原来的1/8,那么总的颜色数就为32*32*32.原始图像中的每个颜色都替换为它所在格子的中心对应的颜色。因此,这个算法很简单:如果N是颜色缩小比例,那么对于图像中每个像素的每一个通道,将其值除以N(整数除法,舍去余数),然后再乘以N,这样就能得到不大于原始像素值的最大倍值。如果对每个8位通道的值都进行上述操作,那么就可以得到共计256/N*256/N*256/N个颜色值。

首次接触图像处理,通过次来记录自己的学习记录,以方便回忆。 //指针访问像素 void colorReduce(Mat& temImage, int div) { //行数 int rowNumber = temImage.rows; cout << "图像通道数:" << temImage.channels() << endl; //列数*通道数=每一行的元素个数 int colNumber = temImage.cols * temImage.channels(); for (int row = 0; row < rowNumber;row++) { uchar* data = temImage.ptr<uchar>(row); for (int col = 0; col < colNumber;col++) { data[col] = data[col] / div*div + div / 2; } } } //迭代器iterator操作像素 void iterColorReduce(Mat& temImage,int div) { Mat_<Vec3b>::iterator it = temImage.begin<Vec3b>(); Mat_<Vec3b>::iterator itend = temImage.end<Vec3b>(); //存取彩色图像的像素 while (it != itend) { //开始处理每个像素 (*it)[0] = (*it)[0] / div*div + div / 2; (*it)[1] = (*it)[1] / div*div + div / 2; (*it)[2] = (*it)[2] / div*div + div / 2; ++it; } } //动态地址计算像素 void atColorReduce(Mat& temImage, int div) { int rowNumber = temImage.rows; int colNumber = temImage.cols; //存取彩色图像 for (int row = 0; row < rowNumber; row++) { for (int col = 0; col < colNumber; col++) { //开始处理每个图像 //蓝色通道 temImage.at<Vec3b>(row, col)[0] = temImage.at<Vec3b>(row, col)[0] / div*div + div / 2; //绿色通道 temImage.at<Vec3b>(row, col)[1] = temImage.at<Vec3b>(row, col)[1] / div*div + div / 2; //红色通道 temImage.at<Vec3b>(row, col)[2] = temImage.at<Vec3b>(row, col)[2] / div*div + div / 2; } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宏之亮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值