程序功能:
对图像进行颜色缩减
程序:
// learn_colorReduce.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
void colorReduce(cv::Mat &image ,int div=128)
{
int nl = image.rows;//行数
int nc = image.cols;//列数
if(image.isContinuous())
{
//当图像没有额外的填补像素时
nc=nc*nl;//
nl=1;//一维数组
}
int n= static_cast<int>(log(static_cast<double>(div)/(log(2.0))));//用来对像素值进行取整的二进制掩模
uchar mask = 0xff<<n;//
for(int j = 0; j < nl; j++)
{
uchar* data=image.ptr<uchar>(j);//第j行的地址
for(int i = 0; i < nc; i++)
{
//处理每个像素
*data++=*data&mask + div/2;
*data++=*data&mask + div/2;
*data++=*data&mask + div/2;
}//for i
}//for j
}
int _tmain(int argc, _TCHAR* argv[])
{
cv::Mat image1;
//cv::Mat image2;
image1= cv::imread("D:\\image\\boldt.jpg");
if (!image1.data)
{
return 0;
}
cv::namedWindow("输入图像");
cv::namedWindow("输出图像");
cv::imshow("输入图像",image1);
colorReduce(image1);
cv::imshow("输出图像",image1);
cv::waitKey();
return 0;
}
程序运行结果:
图1 颜色缩减前的图像
图2 颜色缩减后的图像
程序分析:
彩色图像由三个通道组成,每一个通道对应三原色(红、绿、蓝)之一的强度。由于每个强度值都是用一个8位unsigned char表示,所以全部可能得颜色数目为256*256*256,大于1600万个。为了降低分析的复杂度,降低图像中的颜色数目有时候是有用的。一个简单的办法就是将RGB空间划分为同等大小的格子。例如,将每一个维度的颜色降低为原来的1/8,那么总的颜色数就为32*32*32.原始图像中的每个颜色都替换为它所在格子的中心对应的颜色。因此,这个算法很简单:如果N是颜色缩小比例,那么对于图像中每个像素的每一个通道,将其值除以N(整数除法,舍去余数),然后再乘以N,这样就能得到不大于原始像素值的最大倍值。如果对每个8位通道的值都进行上述操作,那么就可以得到共计256/N*256/N*256/N个颜色值。