原题链接:力扣
描述:
给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li 、宽度为 wi 。
如果存在 k 同时满足 k <= li 和 k <= wi ,就可以将第 i 个矩形切成边长为 k 的正方形。例如,矩形 [4,6] 可以切成边长最大为 4 的正方形。
设 maxLen 为可以从矩形数组 rectangles 切分得到的 最大正方形 的边长。
请你统计有多少个矩形能够切出边长为 maxLen 的正方形,并返回矩形 数目 。
示例 1:
输入:rectangles = [[5,8],[3,9],[5,12],[16,5]]
输出:3
解释:能从每个矩形中切出的最大正方形边长分别是 [5,3,5,5] 。
最大正方形的边长为 5 ,可以由 3 个矩形切分得到。
示例 2:
输入:rectangles = [[2,3],[3,7],[4,3],[3,7]]
输出:3
提示:
1 <= rectangles.length <= 1000
rectangles[i].length == 2
1 <= li, wi <= 109
li != wi
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-rectangles-that-can-form-the-largest-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
* 解题思路: * 这题解题思路其实就是先求数组中两边边的短边,然后记一下短边的长度。如果等于最小长度则num++
代码:
public class Solution1725 {
public int countGoodRectangles(int[][] rectangles) {
int max = Integer.MIN_VALUE;
int num = 0;
for (int i = 0; i < rectangles.length; i++) {
int[] rectangle = rectangles[i];
int min = Math.min(rectangle[0], rectangle[1]);
if (min > max) {
max = min;
num = 1;
continue;
}
if (min == max) {
num++;
}
}
return num;
}
}