力扣解法汇总1725-可以形成最大正方形的矩形数目

该博客介绍了如何解决一个编程问题,即给定一组矩形,计算能够切出最大正方形的矩形数量。解题思路是找到每个矩形的较短边,记录最大边长并统计相同边长的矩形数。提供的代码实现了这一逻辑,返回了满足条件的矩形计数。
摘要由CSDN通过智能技术生成

原题链接:力扣


描述:

给你一个数组 rectangles ,其中 rectangles[i] = [li, wi] 表示第 i 个矩形的长度为 li 、宽度为 wi 。

如果存在 k 同时满足 k <= li 和 k <= wi ,就可以将第 i 个矩形切成边长为 k 的正方形。例如,矩形 [4,6] 可以切成边长最大为 4 的正方形。

设 maxLen 为可以从矩形数组 rectangles 切分得到的 最大正方形 的边长。

请你统计有多少个矩形能够切出边长为 maxLen 的正方形,并返回矩形 数目 。

示例 1:

输入:rectangles = [[5,8],[3,9],[5,12],[16,5]]
输出:3
解释:能从每个矩形中切出的最大正方形边长分别是 [5,3,5,5] 。
最大正方形的边长为 5 ,可以由 3 个矩形切分得到。
示例 2:

输入:rectangles = [[2,3],[3,7],[4,3],[3,7]]
输出:3
 

提示:

1 <= rectangles.length <= 1000
rectangles[i].length == 2
1 <= li, wi <= 109
li != wi


来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-rectangles-that-can-form-the-largest-square
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路:

* 解题思路:
* 这题解题思路其实就是先求数组中两边边的短边,然后记一下短边的长度。如果等于最小长度则num++

代码:

public class Solution1725 {

    public int countGoodRectangles(int[][] rectangles) {
        int max = Integer.MIN_VALUE;
        int num = 0;
        for (int i = 0; i < rectangles.length; i++) {
            int[] rectangle = rectangles[i];
            int min = Math.min(rectangle[0], rectangle[1]);
            if (min > max) {
                max = min;
                num = 1;
                continue;
            }
            if (min == max) {
                num++;
            }
        }

        return num;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值