torchvision.utils.save_image 讲解

因为这个让我犯过错误,我记录一下。
其他参数百度即可。
主要讲解normalize

a = torch.tensor([0.8, 0.9])
a = a.unsqueeze(0)
save_path = f"111.png"
torchvision.utils.save_image(a, save_path, normalize=False, cmap='gray')

结果:
在这里插入图片描述

normalize为False时,使用Image加载图片

# 使用 Image.open 加载图像
image = Image.open('111.png')
a = np.array(image)

结果:
在这里插入图片描述
发现其实它保存的是三个通道的伪灰度图像。
每个像素值通过0.8x255 0.9x255得来的。

换一个方法读取图片,只希望读取单通道。

在这里插入图片描述

注意
如果将normalize设置为True
他会根据最大值 最小值的归一化方法将其进行线性变化。
0.8变为最小的0 0.9变为最大的1
在这里插入图片描述
Y=(x-最小)/(最大-最小)
1 = (0.9 - 0.8) / (0.9 -0.8)
0 = (0.8-0.8)/ (0.9-0.8)


在这里插入图片描述

Normalize为False时,超过1的被截取为1了。

小于0的被截取为0了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值