因为这个让我犯过错误,我记录一下。
其他参数百度即可。
主要讲解normalize
a = torch.tensor([0.8, 0.9])
a = a.unsqueeze(0)
save_path = f"111.png"
torchvision.utils.save_image(a, save_path, normalize=False, cmap='gray')
结果:
normalize为False时,使用Image加载图片
# 使用 Image.open 加载图像
image = Image.open('111.png')
a = np.array(image)
结果:
发现其实它保存的是三个通道的伪灰度图像。
每个像素值通过0.8x255 0.9x255得来的。
换一个方法读取图片,只希望读取单通道。
注意
如果将normalize设置为True
他会根据最大值 最小值的归一化方法将其进行线性变化。
0.8变为最小的0 0.9变为最大的1
Y=(x-最小)/(最大-最小)
1 = (0.9 - 0.8) / (0.9 -0.8)
0 = (0.8-0.8)/ (0.9-0.8)
当