hiho 1097 : 最小生成树一·Prim算法

本文详细介绍了图论中的两种经典最小生成树算法:Kruskal算法与Prim算法。Kruskal算法从每节点各自形成独立森林开始,通过逐步添加最短边来连接不同的森林。而Prim算法则以一个节点作为起点,不断将未加入树中的顶点以最短边连接到当前生成树上。文中还提供了一个使用Prim算法求解最小生成树的C++代码示例。
摘要由CSDN通过智能技术生成

Kruscal初始每一个节点为一个森林,每次选最短的边连接两个不同森林;

prime初始为由一个节点开始的一棵树,每次从不在树中的顶点中,选出一个 连接到树中边最小的那个 顶点;

#include<climits>
#include<iostream>
#include<vector>
#include<algorithm>

using namespace std;
int m[1005][1005]; //图的矩阵表示
int key[1005];	//key[i]代表 连接节点 i 和当前树中节点 所有边中 的最小边权值
bool visit[1005]; //代表一个节点是否已经在树中
int main() {
	int N;
	while (cin >> N) {
		for (int i = 0; i < N; ++i)
			for (int j = 0; j < N; ++j)
				cin >> m[i][j];
		int ans = 0;
		//prime 算法,以0节点为根节点(初始节点,可任意选)
		
		for (int i = 0; i < N; ++i) //初始化 每一个节点到树中的距离
			key[i] = m[0][i];
		visit[0] = true;
		int k = N - 1;
		while (k--) { //每次取一个节点,取N-1次即可
			int v, min_dis = INT_MAX;
			for (int i = 0; i < N; ++i) //从不在树中的节点中,选出 key值最小的节点v
				if (visit[i] == false && key[i] < min_dis) {
					v = i;
					min_dis = key[i];
				}
			ans += key[v];
			visit[v] = true;
			for (int i = 0; i < N; ++i) // 更新每一个节点到树中的距离
				//key[i]为 v加入树之前,i连接到树的最短边的值,现在v节点也加入树中
				//那么 i 节点连接到树 的最短边为 (key[i]) 与 (i到v节点距离 )中的小者
				if (visit[i] == false && key[i] > m[v][i])
					key[i] = m[v][i];

		}
		cout << ans << endl;
		
	}

	return 0;
}


评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值