Segments POJ - 3304

题目链接:Segments

思路

题目要求一条直线,使得所有线段在该直线上的投影至少有一个公共点。
多画几个图,可以发现,问题实际转化了找到一条直线,使得与所有线段相交。
给出来的点肯定都是有用的,猜一猜就知道要在所有线段的端点中枚举两个点, 连成一条直线,判断其它线段是否与该直线相交即可。
(简单证明:假设有一条直线A,与线段B线段C分别交与2点,此时我们可以通过恰当的旋转直线,将每条线段的其中一个端点作为交点,本题即假设已存在这样一条直线已与2条线段相交,然后去枚举其它线段判断相交即可)

直线和线段相交判断

//`直线和线段相交判断`
	//`-*this line   -v seg`
	//`2 规范相交`
	//`1 非规范相交`
	//`0 不相交`
	int linecrossseg(Line v) {
		int d1 = sgn((e - s) ^ (v.s - s));
		int d2 = sgn((e - s) ^ (v.e - s));
		if ((d1 ^ d2) == -2) return 2;
		return (d1 == 0 || d2 == 0);
	}

主函数

int n;
bool check(Line t){
	for(int k=1;k<=n;k++){
		if(t.linecrossseg(line[k])==0)	return false;
	}
	return true;
}
int main(){
	int t;
	scanf("%d",&t);
	while(t--){
		scanf("%d",&n);
		for(int i=1;i<=n;i++){
			double x1,y1,x2,y2;
			scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
			line[i].s.x=x1;	line[i].s.y=y1;
			line[i].e.x=x2;	line[i].e.y=y2;
		}
		bool isok=false;
		for(int i=1;i<=n;i++){
			for(int j=i;j<=n;j++){
				Line t1,t2,t3,t4;
				t1.s=line[i].s;	t1.e=line[j].s;
				t2.s=line[i].s;	t2.e=line[j].e;
				t3.s=line[i].e;	t3.e=line[j].s;
				t4.s=line[i].e;	t4.e=line[j].e;
				if(t1.s==t1.e){}
				else{
					if(check(t1)){
						isok=true;
						break;
					}
				}
				if(t2.s==t2.e){}
				else{
					if(check(t2)){
						isok=true;
						break;
					}
				}
				if(t3.s==t3.e){}
				else{
					if(check(t3)){
						isok=true;
						break;
					}
				}
				if(t4.s==t4.e){}
				else{
					if(check(t4)){
						isok=true;
						break;
					}
				}
			}
		}
		if(isok)	puts("Yes!");
		else	puts("No!");
		
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值