神经网络与深度学习 - 作业3

公式推导

代码实现:

1.对比【numpy】和【pytorch】程序,总结并陈述。

numpy实现:

import numpy as np

def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a


def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(round(out_o1, 5), round(out_o2, 5))

    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

    print("损失函数:均方误差")
    print(round(error, 5))

    return out_o1, out_o2, out_h1, out_h2


def back_propagate(out_o1, out_o2, out_h1, out_h2):
    # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2
    # print(round(d_o1, 2), round(d_o2, 2))

    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    # print(round(d_w5, 2), round(d_w7, 2))
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2
    # print(round(d_w6, 2), round(d_w8, 2))

    d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
    # print(round(d_w1, 2), round(d_w3, 2))

    d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2
    # print(round(d_w2, 2), round(d_w4, 2))
    print("反向传播:误差传给每个权值")
    print(round(d_w1, 5), round(d_w2, 5), round(d_w3, 5), round(d_w4, 5), round(d_w5, 5), round(d_w6, 5),
          round(d_w7, 5), round(d_w8, 5))

    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 5
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8

w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8
x1, x2 = 0.5, 0.3
y1, y2 = 0.23, -0.07
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
print("=====更新前的权值=====")
print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
      round(w8, 2))

for i in range(1000):
    print("=====第" + str(i) + "轮=====")
    out_o1, out_o2, out_h1, out_h2 = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
    d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
    w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

print("更新后的权值")
print(round(w1, 2), round(w2, 2), round(w3, 2), round(w4, 2), round(w5, 2), round(w6, 2), round(w7, 2),
      round(w8, 2))

pytorch实现:

# https://blog.csdn.net/qq_41033011/article/details/109325070
# https://github.com/Darwlr/Deep_learning/blob/master/06%20Pytorch%E5%AE%9E%E7%8E%B0%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD.ipynb
# torch.nn.Sigmoid(h_in)

import torch

x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])  # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True


def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a


def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2


def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss


def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1.data = w1.data - step * w1.grad.data
    w2.data = w2.data - step * w2.grad.data
    w3.data = w3.data - step * w3.grad.data
    w4.data = w4.data - step * w4.grad.data
    w5.data = w5.data - step * w5.grad.data
    w6.data = w6.data - step * w6.grad.data
    w7.data = w7.data - step * w7.grad.data
    w8.data = w8.data - step * w8.grad.data
    w1.grad.data.zero_()  # 注意:将w中所有梯度清零
    w2.grad.data.zero_()
    w3.grad.data.zero_()
    w4.grad.data.zero_()
    w5.grad.data.zero_()
    w6.grad.data.zero_()
    w7.grad.data.zero_()
    w8.grad.data.zero_()
    return w1, w2, w3, w4, w5, w6, w7, w8


print("=====更新前的权值=====")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

for i in range(2000):
    print("=====第" + str(i%100) + "轮=====")
    L = loss_fuction(x1, x2, y1, y2)  # 前向传播,求 Loss,构建计算图
    L.backward()  # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
    print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
          round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
          round(w8.grad.item(), 2))
    w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)

print("更新后的权值")
print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

对比:

numpy结果:

 

pytorch结果:

 

我们发现,虽然最后权重的值不同,但是因为损失都在0.002和0.003,所以我们认为都能够达到全局最优解。


2.激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述。

我们先将之前我们使用torch中的手写的sigmoid注释,再将所有的sigmoid替换成torch.sigmoid发现如下结果:

由于我不太清楚torch.sigmoid底层,所以特地去百度了一下,找到了这个博客:

15_torch.sigmoid,torch.nn.Sigmoid之间的区别

为了方便,我讲这位哥的图所涉及到的图搬了过来:

 

手写的sigmoid是不能操纵张量运算的,torch.sigmoid则对于多维的张量都可以接受,而torch.nn.sigmoid则是成为了一个类的包装。 


3.激活函数Sigmoid改变为Relu,观察、总结并陈述。

修改为Relu函数实现效果如下:

可以看出来的是,Relu的实现效果并不好,误差达到了5.55。


4.损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

可以看出来的是,结果还是比较不错的,我们得到了0.005的误差。


5.损失函数MSE改变为交叉熵,观察、总结并陈述。

可知,训练150次后的结果还算比较能接受。好像训练次数多了会出现负数,所以我改了一下迭代次数。


6.改变步长,训练次数,观察、总结并陈述。

训练了1000次,出现了负数,解决办法和原因:https://www.jb51.net/article/190282.htm


7.权值w1-w8初始值换为随机数,对比“指定权值”的结果,观察、总结并陈述。

对比发现,收敛与否与权重的初始值无关,只与收敛速度有关。


8.权值w1-w8初始值换为0,观察、总结并陈述。

初始值为0的情况下,仍然收敛,与是否收敛无关


9.全面总结反向传播原理和编码实现,认真写心得体会。

捋一下反向传播的整体思路:

①前向传播开始,我们通过前向传播得到了损失

②我们为了最小化损失,对神经网络中的各个未知参数进行求导

③我们由前边推得的求导公式,计算各个参数的梯度。

④根据梯度,我们能够将参数进行更新。

⑤参数更新后,进行下一次反向传播,即返回①

通过一次一次的迭代,我们可以找到最后的收敛所对应的参数信息,当做最后我们求得的结果。

以上就是我认为前馈神经网络的原理,然后至于心得体会的话,我感觉还是学到了不少吧,神经网络本质上其实也是线性函数的叠加,所以变成了非线性的,就类似于数学中的求积分我感觉像是,就是通过线性叠加的办法将一种方法变为了另一种方法,而参数更新的过程呢,其实就是对最终的积分再去求导数,相当于剥洋葱,一层一层剥,直到剥到我想要的那一层。以上就是我对神经网络的心得体会。

参考博客:

 NNDL 作业3:分别使用numpy和pytorch实现FNN例题

人工智能作业2例题程序复现

人工智能作业3例题程序复现-pytorch
 

 

 

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鬼缠身、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值