【神经网络与深度学习day10-基于torch使用Lenet实现手写数字识别】


5.3 基于LeNet实现手写体数字识别实验

5.3.1 MNIST数据集

5.3.1.1 数据集介绍

手写体数字识别是计算机视觉中最常用的图像分类任务,让计算机识别出给定图片中的手写体数字(0-9共10个数字)。由于手写体风格差异很大,因此手写体数字识别是具有一定难度的任务。

我们采用常用的手写数字识别数据集:MNIST数据集。
我们可以从这里下载手写数字识别数据集:MNIST
MNIST数据集是计算机视觉领域的经典入门数据集,包含了60,000个训练样本和10,000个测试样本。

这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28×28像素)。
在这里插入图片描述
LeNet-5虽然提出的时间比较早,但它是一个非常成功的神经网络模型。

基于LeNet-5的手写数字识别系统在20世纪90年代被美国很多银行使用,用来识别支票上面的手写数字。
在这里插入图片描述
导入数据集代码如下:

import json
import gzip
# 打印并观察数据集分布情况
train_set, dev_set, test_set = json.load(gzip.open('./mnist.json.gz'))
train_images, train_labels = train_set[0][:3000], train_set[1][:3000]
dev_images, dev_labels = dev_set[0][:200], dev_set[1][:200]
test_images, test_labels = test_set[0][:200], test_set[1][:200]
train_set, dev_set, test_set = [train_images, train_labels], [dev_images, dev_labels], [test_images, test_labels]
print('Length of train/dev/test set:{}/{}/{}'.format(len(train_set[0]), len(dev_set[0]), len(test_set[0])))

为了方便观察训练过程,我们划分训练集3000张。
Length of train/dev/test set:3000/200/200
在这里插入图片描述
数据集第一张图片展示:
代码:

import numpy as np
import matplotlib.pyplot as plt
import torch
import PIL.Image as Image
image, label = train_set[0][0], train_set[1][0]
image, label = np.array(image).astype('float32'), int(label)
# 原始图像数据为长度784的行向量,需要调整为[28,28]大小的图像
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
print("The number in the picture is {}".format(label))
plt.figure(figsize=(5, 5))
plt.imshow(image)
plt.savefig('conv-number5.pdf')

在这里插入图片描述

5.3.1.2 数据集导入

import torchvision.transforms as transforms

# 数据预处理
transforms = transforms.Compose([transforms.Resize(32),transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5])])
import random
from torch.utils.data import Dataset,DataLoader

class MNIST_dataset(Dataset):
    def __init__(self, dataset, transforms, mode='train'):
        self.mode = mode
        self.transforms =transforms
        self.dataset = dataset

    def __getitem__(self, idx):
        # 获取图像和标签
        image, label = self.dataset[0][idx], self.dataset[1][idx]
        image, label = np.array(image).astype('float32'), int(label)
        image = np.reshape(image, [28,28])
        image = Image.fromarray(image.astype('uint8'), mode='L')
        image = self.transforms(image)

        return image, label

    def __len__(self):
        return len(self.dataset[0])
# 加载 mnist 数据集
train_dataset = MNIST_dataset(dataset=train_set, transforms=transforms, mode='train')
test_dataset = MNIST_dataset(dataset=test_set, transforms=transforms, mode='test')
dev_dataset = MNIST_dataset(dataset=dev_set, transforms=transforms, mode='dev')

5.3.2 模型构建

这里的LeNet-5和原始版本有4点不同:

  1. C3层没有使用连接表来减少卷积数量。
  2. 汇聚层使用了简单的平均汇聚,没有引入权重和偏置参数以及非线性激活函数。
  3. 卷积层的激活函数使用ReLU函数。
  4. 最后的输出层为一个全连接线性层。

网络共有7层,包含3个卷积层、2个汇聚层以及2个全连接层的简单卷积神经网络接,受输入图像大小为32×32=1024,输出对应10个类别的得分。

5.3.2.1 使用自定义算子,构建LeNet-5模型

自定义的Conv2D和Pool2D算子中包含多个for循环,所以运算速度比较慢。

import torch.nn.functional as F
import torch.nn as nn


class Model_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(Model_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5×5
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2×2,步长为2
        self.pool2 = nn.MaxPool2d(kernel_size=(2, 2), stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5×5,步长为1
        self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1)
        # 汇聚层:汇聚窗口为2×2,步长为2
        self.pool4 = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5×5
        self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(120, 84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(84, num_classes)

    def forward(self, x):
        # C1:卷积层+激活函数

        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output

5.3.2.2 使用pytorch中的相应算子,构建LeNet-5模型

torch.nn.Conv2d();torch.nn.MaxPool2d();torch.nn.avg_pool2d()

class Torch_LeNet(nn.Module):
    def __init__(self, in_channels, num_classes=10):
        super(Torch_LeNet, self).__init__()
        # 卷积层:输出通道数为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=6, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为6,输出通道数为16,卷积核大小为5*5
        self.conv3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
        # 汇聚层:汇聚窗口为2*2,步长为2
        self.pool4 = nn.AvgPool2d(kernel_size=2, stride=2)
        # 卷积层:输入通道数为16,输出通道数为120,卷积核大小为5*5
        self.conv5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
        # 全连接层:输入神经元为120,输出神经元为84
        self.linear6 = nn.Linear(in_features=120, out_features=84)
        # 全连接层:输入神经元为84,输出神经元为类别数
        self.linear7 = nn.Linear(in_features=84, out_features=num_classes)

    def forward(self, x):
        # C1:卷积层+激活函数
        output = F.relu(self.conv1(x))
        # S2:汇聚层
        output = self.pool2(output)
        # C3:卷积层+激活函数
        output = F.relu(self.conv3(output))
        # S4:汇聚层
        output = self.pool4(output)
        # C5:卷积层+激活函数
        output = F.relu(self.conv5(output))
        # 输入层将数据拉平[B,C,H,W] -> [B,CxHxW]
        output = torch.squeeze(output, dim=3)
        output = torch.squeeze(output, dim=2)
        # F6:全连接层
        output = F.relu(self.linear6(output))
        # F7:全连接层
        output = self.linear7(output)
        return output

5.3.2.3模型测试

测试LeNet-5模型,构造一个形状为 [1,1,32,32]的输入数据送入网络,观察每一层特征图的形状变化。

# 这里用np.random创建一个随机数组作为输入数据
inputs = np.random.randn(*[1, 1, 32, 32])
inputs = inputs.astype('float32')

# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
print(model)
# 通过调用LeNet从基类继承的sublayers()函数,查看LeNet中所包含的子层
print(model.named_parameters())
x = torch.tensor(inputs)
print(x)
for item in model.children():
    # item是LeNet类中的一个子层
    # 查看经过子层之后的输出数据形状
    item_shapex = 0
    names = []
    parameter = []
    for name in item.named_parameters():
        names.append(name[0])
        parameter.append(name[1])
        item_shapex += 1
    try:
        x = item(x)
    except:
        # 如果是最后一个卷积层输出,需要展平后才可以送入全连接层
        x = x.reshape([x.shape[0], -1])
        x = item(x)

    if item_shapex == 2:
        # 查看卷积和全连接层的数据和参数的形状,
        # 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
        print(item, x.shape, parameter[0].shape, parameter[1].shape)
    else:
        # 汇聚层没有参数
        print(item, x.shape)

结果:
在这里插入图片描述

5.3.2.4 测试两个网络的运算速度。

测试两个网络的运算速度的代码如下:

import time

# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)

# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)

# 计算Model_LeNet类的运算速度
model_time = 0
for i in range(60):
    strat_time = time.time()
    out = model(x)
    end_time = time.time()
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    model_time += (end_time - strat_time)
avg_model_time = model_time / 50
print('Model_LeNet speed:', avg_model_time, 's')
# 计算Torch_LeNet类的运算速度
torch_model_time = 0
for i in range(60):
    strat_time = time.time()
    torch_out = torch_model(x)
    end_time = time.time()
    # 预热10次运算,不计入最终速度统计
    if i < 10:
        continue
    torch_model_time += (end_time - strat_time)
avg_torch_model_time = torch_model_time / 50

print('Torch_LeNet speed:', avg_torch_model_time, 's')

测试结果:
在这里插入图片描述
我们发现,自定义算子慢于torch算子,但是相差也不算很大,可以忽略不计,但是torch的性能表现确实比自定义算子的性能表现要好。

5.3.2.5 测试两个网络的运算结果

令两个网络加载同样的权重,测试一下两个网络的输出结果是否一致。

# 这里用np.random创建一个随机数组作为测试数据
inputs = np.random.randn(*[1,1,32,32])
inputs = inputs.astype('float32')
x = torch.tensor(inputs)

# 创建Model_LeNet类的实例,指定模型名称和分类的类别数目
model = Model_LeNet(in_channels=1, num_classes=10)
# 获取网络的权重
params = model.state_dict()
# 自定义Conv2D算子的bias参数形状为[out_channels, 1]
# torch API中Conv2D算子的bias参数形状为[out_channels]
# 需要进行调整后才可以赋值
for key in params:
    if 'bias' in key:
        params[key] = params[key].squeeze()
# 创建Torch_LeNet类的实例,指定模型名称和分类的类别数目
torch_model = Torch_LeNet(in_channels=1, num_classes=10)
# 将Model_LeNet的权重参数赋予给Torch_LeNet模型,保持两者一致
torch_model.load_state_dict(params)

# 打印结果保留小数点后6位
torch.set_printoptions(6)
# 计算Model_LeNet的结果
output = model(x)
print('Model_LeNet output: ', output)
# 计算Torch_LeNet的结果
torch_output = torch_model(x)
print('Torch_LeNet output: ', torch_output)

运算结果比较:
在这里插入图片描述

5.3.2.6 统计LeNet-5模型的参数量和计算量。

我们使用torchsummary统计参数量和计算量:
代码如下:

from torchsummary import summary
model = Torch_LeNet(in_channels=1, num_classes=10)
params_info = summary(model, (1, 32, 32))
print(params_info)

在这里插入图片描述

5.3.2.7 paddle可以统计Floats,torch可以吗?

在飞桨中,还可以使用paddle.flopsAPI自动统计计算量。pytorch可以么?
回答:可以,在torch中,我们可以使用torchstat统计计算量。

from torchstat import stat
# 导入模型,输入一张输入图片的尺寸
stat(model, (1, 32,32))

结果展示:
在这里插入图片描述

5.3.3 模型训练

使用交叉熵损失函数,并用随机梯度下降法作为优化器来训练LeNet-5网络。
用RunnerV3在训练集上训练5个epoch,并保存准确率最高的模型作为最佳模型。
我们选择训练6个epoch,然后给出RunnerV3和Accuracy的code:

class RunnerV3(object):
    def __init__(self, model, optimizer, loss_fn, metric, **kwargs):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric  # 只用于计算评价指标

        # 记录训练过程中的评价指标变化情况
        self.dev_scores = []

        # 记录训练过程中的损失函数变化情况
        self.train_epoch_losses = []  # 一个epoch记录一次loss
        self.train_step_losses = []  # 一个step记录一次loss
        self.dev_losses = []

        # 记录全局最优指标
        self.best_score = 0

    def train(self, train_loader, dev_loader=None, **kwargs):
        # 将模型切换为训练模式
        self.model.train()

        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_steps = kwargs.get("log_steps", 100)
        # 评价频率
        eval_steps = kwargs.get("eval_steps", 0)

        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")

        custom_print_log = kwargs.get("custom_print_log", None)

        # 训练总的步数
        num_training_steps = num_epochs * len(train_loader)

        if eval_steps:
            if self.metric is None:
                raise RuntimeError('Error: Metric can not be None!')
            if dev_loader is None:
                raise RuntimeError('Error: dev_loader can not be None!')

        # 运行的step数目
        global_step = 0

        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            # 用于统计训练集的损失
            total_loss = 0
            for step, data in enumerate(train_loader):
                X, y = data
                # 获取模型预测
                logits = self.model(X)
                loss = self.loss_fn(logits, y)  # 默认求mean
                total_loss += loss

                # 训练过程中,每个step的loss进行保存
                self.train_step_losses.append((global_step, loss.item()))

                if log_steps and global_step % log_steps == 0:
                    print(
                        f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")

                # 梯度反向传播,计算每个参数的梯度值
                loss.backward()

                if custom_print_log:
                    custom_print_log(self)

                # 小批量梯度下降进行参数更新
                self.optimizer.step()
                # 梯度归零
                optimizer.zero_grad()

                # 判断是否需要评价
                if eval_steps > 0 and global_step > 0 and \
                        (global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):

                    dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)
                    print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")

                    # 将模型切换为训练模式
                    self.model.train()

                    # 如果当前指标为最优指标,保存该模型
                    if dev_score > self.best_score:
                        self.save_model(save_path)
                        print(
                            f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")
                        self.best_score = dev_score

                global_step += 1

            # 当前epoch 训练loss累计值
            trn_loss = (total_loss / len(train_loader)).item()
            # epoch粒度的训练loss保存
            self.train_epoch_losses.append(trn_loss)

        print("[Train] Training done!")

    # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def evaluate(self, dev_loader, **kwargs):
        assert self.metric is not None

        # 将模型设置为评估模式
        self.model.eval()

        global_step = kwargs.get("global_step", -1)

        # 用于统计训练集的损失
        total_loss = 0

        # 重置评价
        self.metric.reset()

        # 遍历验证集每个批次
        for batch_id, data in enumerate(dev_loader):
            X, y = data

            # 计算模型输出
            logits = self.model(X)

            # 计算损失函数
            loss = self.loss_fn(logits, y).item()
            # 累积损失
            total_loss += loss

            # 累积评价
            self.metric.update(logits, y)

        dev_loss = (total_loss / len(dev_loader))
        dev_score = self.metric.accumulate()

        # 记录验证集loss
        if global_step != -1:
            self.dev_losses.append((global_step, dev_loss))
            self.dev_scores.append(dev_score)

        return dev_score, dev_loss

    # 模型评估阶段,使用'paddle.no_grad()'控制不计算和存储梯度
    @torch.no_grad()
    def predict(self, x, **kwargs):
        # 将模型设置为评估模式
        self.model.eval()
        # 运行模型前向计算,得到预测值
        logits = self.model(x)
        return logits

    def save_model(self, save_path):
        torch.save(self.model.state_dict(), save_path)

    def load_model(self, model_path):
        state_dict = torch.load(model_path)
        self.model.load_state_dict(state_dict)
import torch
#新增准确率计算函数
def accuracy(preds, labels):
    """
    输入:
        - preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
        - labels:真实标签,shape=[N, 1]
    输出:
        - 准确率:shape=[1]
    """
    print(preds)
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # 使用'torch.can_cast'将preds的数据类型转换为float32类型
        preds = torch.can_cast((preds>=0.5).dtype,to=torch.float32)
    else:
        # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
        preds = torch.argmax(preds,dim=1)
        torch.can_cast(preds.dtype,torch.int32)
    return torch.mean(torch.tensor((preds == labels), dtype=torch.float32))


class Accuracy():
    def __init__(self):
        """
        输入:
           - is_logist: outputs是logist还是激活后的值
        """

        # 用于统计正确的样本个数
        self.num_correct = 0
        # 用于统计样本的总数
        self.num_count = 0

        self.is_logist = True

    def update(self, outputs, labels):
        """
        输入:
           - outputs: 预测值, shape=[N,class_num]
           - labels: 标签值, shape=[N,1]
        """

        # 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务
        if outputs.shape[1] == 1: # 二分类
            outputs = torch.squeeze(outputs, axis=-1)
            if self.is_logist:
                # logist判断是否大于0
                preds = torch.can_cast((outputs>=0), dtype=torch.float32)
            else:
                # 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
                preds = torch.can_cast((outputs>=0.5), dtype=torch.float32)
        else:
            # 多分类时,使用'paddle.argmax'计算最大元素索引作为类别
            preds = torch.argmax(outputs, dim=1).int()

        # 获取本批数据中预测正确的样本个数
        labels = torch.squeeze(labels, dim=-1)
        batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).numpy()
        batch_count = len(labels)

        # 更新num_correct 和 num_count
        self.num_correct += batch_correct
        self.num_count += batch_count

    def accumulate(self):
        # 使用累计的数据,计算总的指标
        if self.num_count == 0:
            return 0
        return self.num_correct / self.num_count

    def reset(self):
        # 重置正确的数目和总数
        self.num_correct = 0
        self.num_count = 0

    def name(self):
        return "Accuracy"
import torch.optim as opti
# 学习率大小
lr = 0.1
# 批次大小
batch_size = 64
# 加载数据
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
dev_loader = DataLoader(dev_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
# 定义LeNet网络
# 自定义算子实现的LeNet-5
model = Model_LeNet(in_channels=1, num_classes=10)
# 飞桨API实现的LeNet-5
# model = Paddle_LeNet(in_channels=1, num_classes=10)
# 定义优化器
optimizer = opti.SGD(model.parameters(), 0.2)
# 定义损失函数
loss_fn = F.cross_entropy
# 定义评价指标
metric = Accuracy()
# 实例化 RunnerV3 类,并传入训练配置。
runner = RunnerV3(model, optimizer, loss_fn, metric)
# 启动训练
log_steps = 15
eval_steps = 15
runner.train(train_loader, dev_loader, num_epochs=6, log_steps=log_steps,
                eval_steps=eval_steps, save_path="best_model.pdparams")

结果展示:
[Train] epoch: 0/6, step: 0/282, loss: 2.29864
[Train] epoch: 0/6, step: 15/282, loss: 2.23512
[Evaluate] dev score: 0.35000, dev loss: 2.22403
[Evaluate] best accuracy performence has been updated: 0.00000 --> 0.35000
:60: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).numpy()
[Train] epoch: 0/6, step: 30/282, loss: 2.26119
[Evaluate] dev score: 0.09000, dev loss: 2.31535
[Train] epoch: 0/6, step: 45/282, loss: 1.87482
[Evaluate] dev score: 0.31500, dev loss: 1.96644
[Train] epoch: 1/6, step: 60/282, loss: 1.49791
[Evaluate] dev score: 0.32500, dev loss: 1.90903
[Train] epoch: 1/6, step: 75/282, loss: 1.08951
[Evaluate] dev score: 0.43000, dev loss: 1.97639
[Evaluate] best accuracy performence has been updated: 0.35000 --> 0.43000
[Train] epoch: 1/6, step: 90/282, loss: 0.72709
[Evaluate] dev score: 0.72000, dev loss: 0.62929
[Evaluate] best accuracy performence has been updated: 0.43000 --> 0.72000
[Train] epoch: 2/6, step: 105/282, loss: 1.01030
[Evaluate] dev score: 0.58000, dev loss: 1.11268
[Train] epoch: 2/6, step: 120/282, loss: 0.30258
[Evaluate] dev score: 0.84000, dev loss: 0.36762
[Evaluate] best accuracy performence has been updated: 0.72000 --> 0.84000
[Train] epoch: 2/6, step: 135/282, loss: 0.27759
[Evaluate] dev score: 0.87500, dev loss: 0.38257
[Evaluate] best accuracy performence has been updated: 0.84000 --> 0.87500
[Train] epoch: 3/6, step: 150/282, loss: 0.37689
[Evaluate] dev score: 0.81500, dev loss: 0.50451
[Train] epoch: 3/6, step: 165/282, loss: 0.39598
[Evaluate] dev score: 0.90500, dev loss: 0.26139
[Evaluate] best accuracy performence has been updated: 0.87500 --> 0.90500
[Train] epoch: 3/6, step: 180/282, loss: 0.20255
[Evaluate] dev score: 0.89500, dev loss: 0.26024
[Train] epoch: 4/6, step: 195/282, loss: 0.08575
[Evaluate] dev score: 0.92000, dev loss: 0.16601
[Evaluate] best accuracy performence has been updated: 0.90500 --> 0.92000
[Train] epoch: 4/6, step: 210/282, loss: 0.16293
[Evaluate] dev score: 0.95000, dev loss: 0.14370
[Evaluate] best accuracy performence has been updated: 0.92000 --> 0.95000
[Train] epoch: 4/6, step: 225/282, loss: 0.20410
[Evaluate] dev score: 0.95000, dev loss: 0.14841
[Train] epoch: 5/6, step: 240/282, loss: 0.09400
[Evaluate] dev score: 0.94000, dev loss: 0.15105
[Train] epoch: 5/6, step: 255/282, loss: 0.30644
[Evaluate] dev score: 0.96000, dev loss: 0.17032
[Evaluate] best accuracy performence has been updated: 0.95000 --> 0.96000
[Train] epoch: 5/6, step: 270/282, loss: 0.20965
[Evaluate] dev score: 0.87500, dev loss: 0.31949
[Evaluate] dev score: 0.94000, dev loss: 0.12479
[Train] Training done!
在这里插入图片描述
可以看出的是,最好的精确度performence展示已经达到了96%,在验证集上的准确度也达到了94%,取得了不错的效果。

5.3.4 模型评价

我们看一下训练过程中的误差变化和精确率变化:

#可视化误差
def plot(runner, fig_name):
    plt.figure(figsize=(10,5))

    plt.subplot(1,2,1)
    train_items = runner.train_step_losses[::30]
    train_steps=[x[0] for x in train_items]
    train_losses = [x[1] for x in train_items]

    plt.plot(train_steps, train_losses, color='#8E004D', label="Train loss")
    if runner.dev_losses[0][0]!=-1:
        dev_steps=[x[0] for x in runner.dev_losses]
        dev_losses = [x[1] for x in runner.dev_losses]
        plt.plot(dev_steps, dev_losses, color='#E20079', linestyle='--', label="Dev loss")
    #绘制坐标轴和图例
    plt.ylabel("loss", fontsize='x-large')
    plt.xlabel("step", fontsize='x-large')
    plt.legend(loc='upper right', fontsize='x-large')
    
    plt.subplot(1,2,2)
    #绘制评价准确率变化曲线
    if runner.dev_losses[0][0]!=-1:
        plt.plot(dev_steps, runner.dev_scores, 
            color='#E20079', linestyle="--", label="Dev accuracy")
    else:
        plt.plot(list(range(len(runner.dev_scores))), runner.dev_scores, 
            color='#E20079', linestyle="--", label="Dev accuracy")
    #绘制坐标轴和图例
    plt.ylabel("score", fontsize='x-large')
    plt.xlabel("step", fontsize='x-large')
    plt.legend(loc='lower right', fontsize='x-large')
    
    plt.savefig(fig_name)
    plt.show()
runner.load_model('best_model.pdparams')
plot(runner, 'cnn-loss1.pdf')

可视化结果:
在这里插入图片描述
测试准确率:

# 加载最优模型
runner.load_model('best_model.pdparams')
# 模型评价
score, loss = runner.evaluate(test_loader)
print("[Test] accuracy/loss: {:.4f}/{:.4f}".format(score, loss))

在这里插入图片描述

5.3.5 模型预测

# 获取测试集中第一条数
X, label = next(iter(test_loader))
logits = runner.predict(X)
# 多分类,使用softmax计算预测概率
pred = F.softmax(logits,dim=1)
print(pred.shape)
# 获取概率最大的类别
pred_class = torch.argmax(pred[2]).numpy()
print(pred_class)
label = label[2].numpy()
# 输出真实类别与预测类别
print("The true category is {} and the predicted category is {}".format(label, pred_class))
# 可视化图片
plt.figure(figsize=(2, 2))
image, label = test_set[0][2], test_set[1][2]
image= np.array(image).astype('float32')
image = np.reshape(image, [28,28])
image = Image.fromarray(image.astype('uint8'), mode='L')
plt.imshow(image)
plt.savefig('cnn-number2.pdf')

实现结果:
在这里插入图片描述

使用前馈神经网络实现MNIST识别,与LeNet效果对比。(选做)

使用前馈神经网络实现MNIST识别代码:

from torchvision import datasets,transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import torchvision
from torch import nn
import numpy as np
import torch
transformation =transforms.Compose([
    transforms.ToTensor()  #转换到Tensor,并且转换为0-1之间,将channel 放到第一个纬度
])
train_ds = datasets.MNIST('data/',train = True,transform = transformation,download = True)
test_ds = datasets.MNIST('data/',train = False,transform = transformation,download = True)
# len(train_ds)
# len(test_ds)
train_loader = DataLoader(train_ds,batch_size =64 ,shuffle = True,num_workers = 16)
test_loader = DataLoader(test_ds,batch_size =256 ,shuffle = False,num_workers = 16)
class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(28*28,128)
        self.linear2 = nn.Linear(128,64)
        self.linear3 = nn.Linear(64,10)
    def forward(self,input):
        x = input.view(-1,28*28)
        x = nn.functional.relu(self.linear1(x))
        x = nn.functional.relu(self.linear2(x))
        y = self.linear3(x)
        return y
model = Model()
loss_fn  = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
def accuracy(y_pred,y_true):
    y_pred = torch.argmax(y_pred,dim=1)
    acc = (y_pred==y_true).float().mean()
    return acc
#测试集
def evaluate_testset(data_loader,model):
    acc_sum,loss_sum,total_example = 0.0,0.0,0
    for x,y in data_loader:
        y_hat = model(x)
        acc_sum += (y_hat.argmax(dim=1)==y).sum().item()
        loss = loss_fn(y_hat,y) 
        loss_sum += loss.item()
        total_example+=y.shape[0]
    return acc_sum/total_example,loss_sum
#定义模型训练函数
def train(model,train_loader,test_loader,loss,num_epochs,batch_size,params=None,lr=None,optimizer=None):
    train_ls = []
    test_ls = []
    for epoch in range(num_epochs): # 训练模型一共需要num_epochs个迭代周期
        train_loss_sum, train_acc_num,total_examples = 0.0,0.0,0
        for x, y in train_loader: # x和y分别是小批量样本的特征和标签
            y_pred = model(x)
            loss = loss_fn(y_pred, y)  #计算损失
            optimizer.zero_grad() # 梯度清零
            loss.backward()  # 反向传播
            optimizer.step() #梯度更新
            total_examples += y.shape[0]
            train_loss_sum += loss.item()
            train_acc_num += (y_pred.argmax(dim=1)==y).sum().item()
        train_ls.append(train_loss_sum)
        test_acc,test_loss = evaluate_testset(test_loader,model)
        test_ls.append(test_loss)
        print('epoch %d, train_loss %.6f,test_loss %f,train_acc %.6f,test_acc %.6f'%(epoch+1, train_ls[epoch],test_ls[epoch],train_acc_num/total_examples,test_acc))
    return
num_epoch  = 20
batch_size = 64
train(model,train_loader,test_loader,loss_fn,num_epoch,batch_size,params=model.parameters,lr=0.001,optimizer=optimizer)

训练结果示意:
在这里插入图片描述
参数量的对比:
在这里插入图片描述
对比结果发现,卷积神经网络的参数量只有6w,而前馈神经网络却有10w+的参数量,虽然前馈神经网络展现的性能比卷积神经网络好(也可能是因为我卷积神经网络的训练次数太少,具体再高的准确率大家可以自己尝试对比一下),但其5%的准确率却需要再加一倍的性能,这显然展现了卷积神经网络的优点,下面我们来对比一下浮点运算数:
在这里插入图片描述
我们得到的结果是卷积神经网络的计算量>前馈神经网络的计算量,但是为什么会这样呢?我查找了很多资料,各大博客和视频,没有找到具体相关的解释,我的理解是虽然卷积神经网络的参数量少于亲前馈神经网络,但是由于其层数的增多,导致计算量不可避免的增加,但是同等性能下,卷积神经网络肯定是优于前馈神经网络的。

可视化LeNet中的部分特征图和卷积核,谈谈自己的看法。(选做)

C1:卷积层+激活函数
在这里插入图片描述
S2:汇聚层
在这里插入图片描述
C3:卷积层+激活函数
在这里插入图片描述
S4:汇聚层
在这里插入图片描述


总结

今天基于torch使用Lenet实现手写数字识别,实验也写了好久,也和别人探讨了一些准确率低的问题所在,在只更改邱老师的paddle代码的时候,经常会出来准确率为10%的问题,也就是10张图片瞎猜一张的准确率,如下图:
在这里插入图片描述
在探讨问题的过程中,一开始我认为是学习率的影响因素,将学习率设置为0.1、0.2、1、2、5、10、20等发现准确率只提高了5个百分点,甚至只提升一个百分点,和别人探讨的过程中,我们发现在torch中,transform.Normalize的参数过大,Normalize是对数据做标准化处理的,如果参数设置为175.5和175.5的话,会导致均值处在175.5,方差在175.5内,由于我们使用的图片在transforms.ToTensor处理后,值均位于0-1之间,这就解释了为什么这个参数对于卷积神经网络的结果影响之大,顺便提一句,在Normalize中,均值反映了图像的亮度,均值越大说明图像亮度越大,反之越小;标准差反映了图像像素值与均值的离散程度,标准差越大说明图像的质量越好; 我们重新修改为mean = 0.5 和std = 0.5 才得到了这个94%的准确率,至于为什么没有到99%,大家可以自己尝试学习率的更改,我这里得到了一个差不多的准确率就没再调参,大家想要得到99%的准确率可以调这个代码的lr试一下,在这里哦~(模型训练5.3.3这一行,我设置的是0.2):
在这里插入图片描述
这就是今天的全部内容了。

Rerferences:

前馈神经网络实现手写数字识别
transforms.Normalize,计算数据量大数据集的像素均值(mean)和标准差(std)
NNDL 实验5(上)
卷积神经网络 — 动手学深度学习 2.0.0-beta1 documentation (d2l.ai)
老师博客:
NNDL 实验六 卷积神经网络(3)LeNet实现MNIST

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
深度学习是一种人工智能技术,可以通过训练大规模数据来学习和识别模式。在深度学习中,前馈神经网络(Feedforward Neural Network)是最常用的模型之一,它由多个神经元层组成,每个神经元接收上一层的输出作为输入,并通过激活函数将输出传递给下一层。 MNIST是一个常用的手写数字识别数据集,其中包含了60000个用于训练的样本和10000个用于测试的样本。每个样本都是28x28像素的灰度图像,表示了0-9之间的手写数字。 在使用深度学习识别MNIST手写数据集时,我们可以使用PyTorch这样的深度学习框架进行实现。首先,我们需要导入相关的库和模块,并加载数据集。然后,我们可以定义一个前馈神经网络模型,该模型包含若干隐藏层和输出层。每个隐藏层可以使用不同的激活函数,如ReLU或Sigmoid,以增强模型的非线性能力。 接下来,我们可以定义损失函数和优化器,用于评估模型的性能并更新模型的参数。常用的损失函数有交叉熵损失函数,而常用的优化器有梯度下降法和Adam优化器。 接下来,我们可以进行模型的训练。训练过程中,我们使用训练集进行前向传播和反向传播,根据损失函数计算损失,并通过优化器调整模型参数。经过反复的迭代训练,模型可以逐渐提高准确率。 最后,我们可以使用测试集对训练好的模型进行评估。通过将测试集输入到模型中,并将输出与实际标签进行比较,我们可以计算出模型的准确率。如果在测试集上的准确率较高,那么我们可以认为这个模型在MNIST手写数据集上的识别效果较好。 总之,通过使用前馈神经网络模型和深度学习框架如PyTorch,我们可以对MNIST手写数据集进行准确的识别。这个过程包括数据加载、模型定义、损失函数与优化器的选择、模型的训练和模型的评估。通过不断地优化和调整模型,我们可以达到更高的识别准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鬼缠身、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值