第二章、评测指标与方法(包含工具类全部代码)

上两章基本上是AI生成,下面正真的干货来临,注意看~

一、评测指标

1、准确率

  • 插件命中率 :针对一批量数据,智能体独有的命中插件的概率
  • 知识库命中率:针对一批量数据,智能体独有的命中知识库的概率
  • 工作流命中率:针对一批量数据,智能体独有的命中工作流的概率
  • 精确率:系统返回的文档中与查询相关的文档比例,精确率=TP/(TP+FP).目标值:≥ 0.80
  • 召回率(Recall):是针对原样本而言的,其含义是在实际为正的样本中被预测为正样本的概率。目标值:>=0.75
  • 误报率:误报率=FP/(FP+TN)
  • 漏报率:漏报率=FN/(FN+TP)
  • F1:精确率和召回率的调和平均值。F1分数=(2∗精确率∗召回率)/(精确率+召回率),目标值>=0.77

2、生成质量

  • Blue:衡量生成文本与参考文本(通常是人工生成的)之间的相似度,常用于机器翻译评估。目标值>=0.30
  • Rouge:评估生成文本与参考文本之间的重合度,包括ROUGE-1(基于单词的重合)、ROUGE-2(基于短语的重合)和ROUGE-L(基于最长公共子序列的重合)。目标值>=0.35
  • Meteor:评估机器翻译质量的指标,它考虑了词义和词序。目标值:>=0.25

3、响应速度

  • 首响时间:检索第一个字节响应回来的时间
  • 生成速度:从检索结果到生成完成文本所需时间
  • 端到端延迟:从用户输入查询到返回最终生成文本的整体时间

网上应该有很多对于样本混淆矩阵解释,这里就不再过多赘述。稍后在评测和数据集中会说明具体是怎么标记及使用的

二、评测方法

基于python环境,提前先安装

pip install jieba

pip install scikit-learn

pip install rouge

pip install nltk

1、BlueValueTools(生成质量Blue)

避免每次都要下载nltk_data,可以将nltk_data放在一个文件夹下

import os

from xxx.utils import jieba
import nltk
from nltk.translate.bleu_score import SmoothingFunction

class   BlueValueTools(object):

    def __init__(self):
        nltk_data_path = os.path.abspath('./nltk_data')
        nltk.data.path.append(nltk_data_path)

    # 将句子分词并转换为n-gram格式
    def sentence_to_ngrams(self,sentence, n):
        words = jieba.lcut(sentence)
        return set(nltk.ngrams(words, n))

    # 计算BLEU指标
    def calculate_bleu(self,reference, candidate):
        smooth = SmoothingFunction().method4
        scores = []
        # for n in range(1, max_n + 1):
        reference_ngrams = self.sentence_to_ngrams(reference, 1)
        candidate_ngrams = self.sentence_to_ngrams(candidate, 1)
        return nltk.translate.bleu_score.sentence_bleu([reference_ngrams], candidate_ngrams, smoothing_function=smooth)
# # 测试数据
# reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# candidate = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
# # 计算BLEU指标
# bleu_scores = BlueValueTools().calculate_bleu(reference, candidate)
# print(bleu_scores)

2、MeteorValueTools(生成质量Meteor)

import os

from xxx.utils import jieba
import nltk
from nltk.translate.meteor_score import meteor_score


class MeteorValueTools(object):

    def __init__(self):
        nltk_data_path = os.path.abspath('./nltk_data')
        nltk.data.path.append(nltk_data_path)

    def preprocess_text(self, text):
        return ' '.join(jieba.cut(text)).split()

    def calculate_meteor(self, reference, candidate):
        processed_reference = self.preprocess_text(reference)
        processed_candidate = self.preprocess_text(candidate)
        scores = meteor_score([processed_reference], processed_candidate)
        return scores


if __name__ == '__main__':
    reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
    candidate = "关机并断开电源。"
    scores = MeteorValueTools().calculate_meteor(reference, candidate)
    print(scores)

3、RougeValueTools(生成质量Rouge)

from rouge import Rouge
from xxx.utils import jieba


class RougeValueTools(object):

    def preprocess_text(self, text):
        # 分词并连接成字符串
        words = jieba.lcut(text)
        processed_text = ' '.join(words)
        return processed_text

    def calculate_rouge(self, reference, candidate):
        processed_reference = self.preprocess_text(reference)
        processed_candidate = self.preprocess_text(candidate)
        rouge = Rouge()
        scores = rouge.get_scores(processed_candidate, processed_reference, avg=True)

        # print(scores['rouge-1']['f'])
        # print(scores['rouge-2']['f'])
        # print(scores['rouge-l']['f'])
        scores = {'rouge-1': scores['rouge-1']['f'],
                  'rouge-2': scores['rouge-2']['f'],
                  'rouge-l': scores['rouge-l']['f']}
        return scores


if __name__ == '__main__':
    reference = "关机并断开电源:确保电脑完全关闭,并从电源插座中拔掉电源线。"
    candidate = "关机并断开电源。"

    scores = RougeValueTools().calculate_rouge(reference, candidate)
    print(scores)

4、数据集样本计算(先分享工具类,后面数据集中详细讲解)

from sklearn.metrics import confusion_matrix


class PrecisionScoreTool:
    def __init__(self, actual_labels, predicted_labels):
        self.actual_labels = actual_labels
        self.predicted_labels = predicted_labels

    def calculate_metrics(self):
        
        # 计算混淆矩阵
        cm = confusion_matrix(self.actual_labels, self.predicted_labels)

        # 从混淆矩阵提取 TP、TN、FP、FN
        TP = cm[1, 1]
        TN = cm[0, 0]
        FP = cm[0, 1]
        FN = cm[1, 0]
        print(TP, TN, FP, FN)
        recall = TP / (TP + FN) if (TP + FN) != 0 else 0
        precision = TP / (TP + FP) if (TP + FP) != 0 else 0
        F1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) != 0 else 0
        FPR = FP / (FP + TN) if (FP + TN) != 0 else 0
        FNR = FN / (FN + TP) if (FN + TP) != 0 else 0

        return precision, recall, FPR, FNR, F1


if __name__ == '__main__':
    calculator = PrecisionScoreTool([1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1],
                                    [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
                                    )
    precision, recall, FPR, FNR, F1 = calculator.calculate_metrics()
    print(precision)
    print(recall)
    print(FPR)
    print(FNR)
    print(F1)

最后关于响应速度,后面章节会结合大模型调用进行说明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值