有关多边形面积计算的详细理论这里不做介绍,仅给出代码模板,并以HDU-2036作为样例
https://vjudge.net/problem/HDU-2036
//写在前面
//求任意多边形的面积可以将多边形划分为n个三角形
//然后利用叉积公式求每个三角形的面积并将所有三角形面积累加起来即可
//有三角形的面积叉积计算公式:已知三角形的三个顶点
//(x1,y1),(x2,y2),(x3,y3) s=((x2-x1)*(y3-y1)-(x3-x1)*(y2-y1))/2;
//于是多边形的面积 S=sigma(ni) ni为第i个三角形的面积
//这里以 HDU-2036作为样例说明
#include <iostream>
#include <iomanip>
#define maxn 105
using namespace std;
struct point//点的结构体
{
int x,y;
};
double cross(point p1,point p2,point p3)
{
double sum=(p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y);
return sum;
}
point node[maxn];
int main()
{
int n;
while(cin>>n&&n)
{
for(int i=0;i<n;i++)cin>>node[i].x>>node[i].y;
double ans=0;
for(int j=2;j<n;j++)ans+=cross(node[0],node[j-1],node[j]);
ans=ans/2;
cout<<setiosflags(ios::fixed)<<setprecision(1)<<ans<<'\n';
}
}