【李宏毅深度强化学习笔记】3、Q-learning(Basic Idea)

【李宏毅深度强化学习笔记】1、策略梯度方法(Policy Gradient)

【李宏毅深度强化学习笔记】2、Proximal Policy Optimization (PPO) 算法

【李宏毅深度强化学习笔记】3、Q-learning(Basic Idea)(本文)

【李宏毅深度强化学习笔记】4、Q-learning更高阶的算法

【李宏毅深度强化学习笔记】5、Q-learning用于连续动作 (NAF算法)

【李宏毅深度强化学习笔记】6、Actor-Critic、A2C、A3C、Pathwise Derivative Policy Gradient

【李宏毅深度强化学习笔记】7、Sparse Reward

【李宏毅深度强化学习笔记】8、Imitation Learning

-------------------------------------------------------------------------------------------------------

【李宏毅深度强化学习】视频地址:https://www.bilibili.com/video/av63546968?p=3

课件地址:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS18.html

-------------------------------------------------------------------------------------------------------

Q-learning

Q-learning 是 value-based 的方法,在这种方法中我们不是要训练一个 policy,而是要训练一个critic网络。critic 并不直接采取行为,只是对现有的 actor \pi,评价它的好坏。

Value-Fuction

critic 给出了一个 value function V^\pi(s),代表在遇到游戏的某个 state 后,采取策略为\pi的actor  一直玩到游戏结束,所能得到的 reward 之和

 V^\pi(s)(即critic)的输入是某个state,输出是一个scalar标量。上图游戏画面中左边的 V^\pi(s) 很大,因为当前怪物比较多,防护罩也没被摧毁,从此时玩到游戏结束得到的 reward 就会比较多;而相对的右边的 V^\pi(s) 就比较小。综上 critic 的输出取决于两点:

  1. state,这个就是左右图对比,刚才说过了
  2. actor 的策略 \pi,如果是个很弱的actor即便左图可能也得到很低的reward。

 

怎么计算V^\pi(s)呢?

 

计算V^\pi(s)的2种方式:

 1、Monte-Carlo (MC) based approach

S_a作为V^\pi(s)的输入最终输出 V^\pi(S_a),而实际上应该得到的cumulative reward是G_a。这其实和 regression problem 很相似,因为我们的目标就是通过训练让 V^\pi(S_a) 越来越接近 G_a ,即理想情况下V^\pi(S_a) =G_a(这里为了方便,假设学习率\alpha为1,原始的公式为V(S_t) = V(S_t) + \alpha (G_t-V(s_t)))。

注意V^\pi(s)是一个网络,因为在游戏中,不可能所有的image都看过,所以V^\pi(s)做成网络来提高泛化性

2、Temporal-difference (TD) approach

MC based的方法要求遇到 S_a后把游戏玩到结束,如果游戏太长的话,那就可能收集不到多少数据去让网络去拟合G_a

而 TD 只需要从 S_t 玩到 S_{t+1} 就行,因此只需要算V^\pi(S_t) = V^\pi(S_{t+1}) + r_t (这里为了方便,假设学习率\alpha和衰减系数\gamma都为1,原始的公式为V(S_t) = V(S_t) + \alpha (r_t+\gamma V(S_{t+1})-V(s_t)))。

那么V^\pi(S_t+1) - V^\pi(S_t) 应该要越接近r_t才是正确的结果,所以将网络往这个方向去train,就可以把这个function训练出来。

MC v.s. TD :

MC 方法的问题在于最后得到的 G_a 的方差很大( G_a 是 在遇到S_a 的情况下使用策略 \pi的actor一直玩游戏直到结束得到的实际 reward,是一个随机变量,因为游戏是有随机性的,所以每一次得到 G_a 是不一样的)。 

假设G_a 是k步 reward 的求和,而根据公式 Var[kX]=k^2Var[X]最终会相差 k^2。所以最后 G_a 的方差很大,即每次算出来的  V^\pi(S_a) 都会相差很多。

而用 TD base 中有随机性的部分是 r它的方差比较小。但 TD 的问题在于 V^\pi(S_{t+1}) 可能不准确。

下面举个例子看它们的区别:

可以看出,同一个actor,用MC based和TD,算出来的结果是不一样的,两种结果没有绝对的正确与否

其中,在第一个episode中,S_a出现后S_b的reward变为0。

在Monte-Carlo方法中,就会认为S_a是一个不好的state,才导致后来的S_b的reward变为0,所以 V^\pi(S_a) 为0.

而TD方法中, 会认为S_a 后 S_b 得到 reward 为 0 只是一个巧合,与 S_a 无关。大部分情况下 S_b 还是会得到 3/4 的 reward,所以认为 V^\pi(S_a) 为3/4。(因为V^\pi(S_a) = V^\pi(S_b) + r_a

 

Q-function:

Q^\pi(s,a)的输入是一个 (s, a) 的 pair,然后输出一个cumulated reward的期望值。这里的cumulated reward指的是在state s下强制采取 action a(不管这个actor认为在state s下采取action a是不是好的,都强制采取a),然后用这个actor \pi 一直玩到游戏结束所得到的cumulated reward。

Q(s_t,a_t) = r_t + \gamma maxQ(s_{t+1},a_{t+1})   (这里为了方便,假设学习率\alpha和衰减系数\gamma都为1,原始的公式为Q(s_t,a_t) = Q(s_t,a_t) + \alpha (r_t + \gamma maxQ(s_{t+1},a_{t+1})-Q(s_t,a_t))

 

以上是Q function的两种常见的写法。

如果action可以穷举,则可以使用右边的写法;否则,使用左边的写法。

 

critic 看上去只能评价某个 action 的好坏,但是实际上可以直接用它来做 reinforcement learning。方法是只要学到一个 \pi 的 Q function Q^\pi(s,a) ,就能有办法找到一个更好的 actor \pi',这样就能不断更新policy  \pi 。

什么叫 \pi' 比 π 好呢?

就是说面对所有 state s 时,使用策略 \pi' 得到的 value 一定比使用策略 \pi 得到的Q value 大,即:V^{\pi'}(s)\geqslant V^\pi(s) 

找 \pi' 的方法是,对于已经学到的 Q function  Q^\pi(s,a),在某个给定的 state 下,分别带入可能的 action,看看哪一个 action 使得Q value最大,把使得函数值Q value最大的 a,作为以后面对该 state 时采取的 action

下图证明了 V^{\pi'}(s)\geqslant V^\pi(s)

Q-Learning使用技巧:

技巧1:使用Target network

Q-function的训练,参考了TD的方法,即Q^\pi(s_t,a_t) = r_t + Q^\pi(s_{t+1},\pi(s_{t+1}))

现在以s_ta_t作为输入,则输出的结果Q^\pi(s_t,a_t),由上图可以得出,这个结果应该尽可能接近以s_{t+1}a_{t+1}作为输入,则输出的结果Q^\pi(s_{t+1},\pi(s_{t+1}))再加上r_t的结果

也是一个类似回归的问题,但是这里不同于前面的Monte-Carlo (MC) based approach和Temporal-difference (TD) approach的回归问题,这里的Q^\pi(s_{t+1},\pi(s_{t+1}))是一直在变化的,即Q^\pi(s_t,a_t)要去拟合的目标,其实是一直在变化,这就对训练产生很大的干扰。

所以

  1. 将以s_{t+1}a_{t+1}作为输入的网络(也叫Target network)固定住,这样r_t + Q^\pi(s_{t+1},\pi(s_{t+1}))也变成一个固定的值,然后让以s_ta_t作为输入的网络去拟合这个固定的值。
  2. 经过N次训练后将左边的网络的参数覆盖掉Target network,形成新的Target network

重复1、2的步骤一直训练下去。

技巧2:使用exploration

Q-learning方法是根据查表来估值的,只有在状态s_t执行过动作a_t之后,我们才能估得出Q^\pi(s_t,a_t)。即便是使用DQN(就是说将Q-function改为一个network,把查表的过程变成network的输入输出)减缓了这个问题,但也可能存在一些状态s_t没执行过动作a_t,没办法估出Q^\pi(s_t,a_t)

现在在状态s下,都没有采取过action a_1a_2a_3,所以所有的Q-value都为0。接下来与环境的互动中,sample到在状态s下,采取动作a_2,会使得Q-value从0变成1。

可以知道,接下去在状态s下就会一直采取动作a_2,而不会去尝试可能未来会获得更大reward的a_1a_3

为了解决这个问题可以使用以下两种方法:

1、Epsilon Greedy

假设\epsilon为0.3,那就会有0.7(1-0.3)的几率会使用以往的经验去执行动作,而剩下0.3的概率随机去试探新的动作

\epsilon会随着训练的进行不断减少,就是说在一开始的时候\epsilon的值会大一点,因为还不知道哪个action是好的,所以还要提高探索(exploration)的次数。随着训练的进行,开始知道哪些action是好的哪些是不好的,就可以减少探索(exploration)的次数。

 2、Boltzmann Exploration

因为Q-value可能有正有负,所以先取exp全部转成正的。然后除以分母,做Normalization。

这样就将所有动作的Q value转化为概率概率的大小和Q value的大小有关。然后通过概率的大小去选择不同动作a,概率大的被选到的次数就会多,概率小的被选到的次数就会少,这样即便Q value小的action也还是有可能会被选到。

技巧3:使用Replay Buffer

把actor的每笔experience (st,at,rt,st+1)放到一个buffer里面,其中buffer里面的exp可能来自采取不同policy的actor(假设actor和环境互动一万次后就更新参数,而buffer里面能存放5万个的exp,就会导致buffer里有5种不同的actor的exp),当buffer满了再替换旧的exp。训练过程时每次从buffer里面sample一个batch(比如说100个exp)出来训练

因为buffer里有采取不同policy的actor的exp,所以导致这个训练过程变成off-policy的。但是因为我们只用一个exp训练,并不是整个trajectory,所以off-policy也没关系

这样做的好处:

1、训练过程中与环境交互很耗时间,而Replay Buffer可以使得之前的actor的exp被反复利用到,减少很Env互动次数;

2、增加数据多样性,降低batch内相关性,提高泛化性能,训练效果更好

 

最后放一张完整的Q-Learing的过程图:

  • 18
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值