D - Just another Robbery LightOJ - 1079

本文介绍了一个基于哈利波特角色的故事背景下的抢劫模拟问题。哈利计划抢劫银行,并希望风险可控。通过输入不同银行的成功率和期望抢劫的银行数量,利用01背包算法计算在被抓概率低于某一阈值的情况下,哈利能获得的最大金额。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

As Harry Potter series is over, Harry has no job. Since he wants to make quick money, (he wants everything quick!) so he decided to rob banks. He wants to make a calculated risk, and grab as much money as possible. But his friends - Hermione and Ron have decided upon a tolerable probability P of getting caught. They feel that he is safe enough if the banks he robs together give a probability less than P.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a real number P, the probability Harry needs to be below, and an integer N (0 < N ≤ 100), the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj (0 < Mj ≤ 100) and a real number Pj . Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj. A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.

Output

For each case, print the case number and the maximum number of millions he can expect to get while the probability of getting caught is less than P.

Sample Input

3

0.04 3

1 0.02

2 0.03

3 0.05

0.06 3

2 0.03

2 0.03

3 0.05

0.10 3

1 0.03

2 0.02

3 0.05

Sample Output

Case 1: 2

Case 2: 4

Case 3: 6

Note

For the first case, if he wants to rob bank 1 and 2, then the probability of getting caught is 0.02 + (1 - 0.02) * .03 = 0.0494 which is greater than the given probability (0.04). That's why he has only option, just to rob rank 2.

Solution

被抓概率=1-逃跑概率

n个逃跑概率可以直接相乘得到总的逃跑概率

接下来交给01背包。100家银行,每家的价值<=100,因此我们能够以取得的总价值为背包容量,以逃跑概率为相应的价值。最后寻找答案的时候,从sumVal向0枚举,遇到的第一个>=1-P(被抓概率上限)的价值即为答案。

#include<bits/stdc++.h>

#define ll long long
#define L(u) u<<1
#define R(u) u<<1|1
using namespace std;
const int MX = 101;
int T, n, sumVal;
int val[MX];
double f[MX*MX];
double p[MX],P;

int main() {
//    freopen("../in", "r", stdin);
    scanf("%d",&T);
    for (int I=1;I<=T;++I) {
        printf("Case %d: ",I);
        scanf("%lf%d",&P,&n);
        P = 1 - P;
        sumVal = 0;
        for (int i=0;i<n;++i) {
            scanf("%d%lf",&val[i],&p[i]);
            p[i]=1-p[i];
            sumVal+=val[i];
        }
        memset(f,0,sizeof(f));
        f[0] = 1;
        for (int i=0;i<n;++i)
            for (int j=sumVal;j>=val[i];--j)
                f[j]=max(f[j],f[j-val[i]]*p[i]);
        for (int i=sumVal;i>=0;--i) {
            if (f[i]>=P) {
                printf("%d\n",i);
                break;
            }
        }
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值