线段树与树状数组

1.线段树

  线段树相对于树状数组较为灵活,但比树状数组的速度会稍微慢一点,且空间是四倍的树状数组。

线段树的思想是,每个结点都是一个结构体{l,r,sum},表示l到r区间内的总和,灵活就灵活在这个总和,因为也可是这个区间最小值,最大值等,线段树一般有四个函数如下:

void pushup(int u)
{
    tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
int build(int u,int l,int r)
{
    if(l == r) tr[u] = {l,r,w[l};
    else
    {
        tr[u] = {l,r};
        int mid = tr[u].l  + tr[u].r >> 1;
        build(u << 1,tr[u].l,mid),build(u << 1 | 1,mid + 1, tr[u].r);
        pushup(u);
    }
}
int query(int u,int l,int r)
{
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
    else
    {
        int sum = 0;
        int mid = tr[u].l + tr[u].r >> 1;
        if(l <= mid) sum = query(u << 1, l , mid);
        if(r > mid) sum += query(u << 1 | 1, mid + 1, r);
        return sum;
    }
}
void modify(int u,int x,int v)
{
    if(tr[u].l == tr[u].r) tr[u].sum += v;
    else
    {
        int mid = tr[u].l + tr[u].r >> 1;
        if(x <= mid) modify(u << 1, x , v);
        else modify(u << 1 | 1, x, v);
        pushup(u);
    }
}

1264. 动态求连续区间和

 

给定 nn 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b][a,b] 的连续和。

输入格式

第一行包含两个整数 nn 和 mm,分别表示数的个数和操作次数。

第二行包含 nn 个整数,表示完整数列。

接下来 mm 行,每行包含三个整数 k,a,bk,a,b (k=0k=0,表示求子数列[a,b][a,b]的和;k=1k=1,表示第 aa 个数加 bb)。

数列从 11 开始计数。

输出格式

输出若干行数字,表示 k=0k=0 时,对应的子数列 [a,b][a,b] 的连续和。

数据范围

1≤n≤1000001≤n≤100000,
1≤m≤1000001≤m≤100000,
1≤a≤b≤n1≤a≤b≤n

输入样例:

10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8

输出样例:

11
30
35
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
#define MAXN 100015
struct node
{
    int l,r,sum;
}tr[MAXN * 4];
int w[MAXN];
int n,m;
void pushup(int u)
{
    tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
int build(int u,int l,int r)
{
    if(l == r) tr[u] = {l,r,w[l]};
    else
    {
        tr[u] = {l,r};
        int mid = l+r >> 1;
        build(u << 1, l , mid),build(u << 1 | 1, mid + 1, r);
        pushup(u);
    }
}
int query(int u,int l, int r)
{
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
    else
    {
        int sum = 0;
        int mid = tr[u].l + tr[u].r >> 1;
        if(l <= mid) sum = query(u << 1, l, r);
        if(r > mid) sum += query(u << 1 | 1, l, r);
        return sum;
    }
}
void modify(int u,int x,int v)
{
    if(tr[u].l == tr[u].r) tr[u].sum += v;
    else
    {
        int mid = tr[u].l + tr[u].r >> 1;
        if(x <= mid) modify(u << 1, x,v);
        else modify(u << 1 | 1, x , v);
        pushup(u);
    }
}
int main()
{
    scanf("%d %d",&n,&m);
    int k,l,r;
    for(int i = 1; i <= n; i++) scanf("%d",&w[i]);
    build(1,1,n);
    
    
    while(m--)
    {
        scanf("%d %d %d",&k,&l,&r);
        if(!k) printf("%d\n",query(1,l,r));
        else modify(1,l,r);
    }
    return 0;
}

2.树状数组有两个操作,单点修改,求前缀和,速度极快,Ologn,比线段树快

 

#define MAXN 10015
int a[MAXN],c[MAXN];
int lowbit(int x)
{
    return x & -x;
}
int query(int x)
{
   int res = 0;
   for(int i = x; i > 0; i -= lowbit(i)) res += c[i];
}
void add(int x,int v)
{
    for(int i = x; i <= n; i += lowbit(i)) c[i] += v;
}//初始化的时候直接顺序add即可!

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线段树树状数组都是用来解决区间关问题的数据结构。 线段树是一种二叉树形式的数据结构,用于解决区间查询问题。每个节点表示一个区间,根节点表示整个区间,通过对区间进行适当的划分,将原问题划分为子问题,递归地构建线段树线段树的叶子节点表示原始数组的单个元素,而其他节点表示其子区间的一些统计信息,如和、最大值、最小值等。通过适当的操作,可以在O(logN)的时间内查询区间的统计信息,也可以在O(logN)的时间内更新一个元素或一个区间的值。 树状数组是一种实现类似累加的数据结构,用于解决前缀查询问题。树状数组的底层数据结构是一个数组,通过对数组的某些位置进行增加或查询操作,可以在O(logN)的时间内得到累加值。数组的索引和实际数值之间存在一种特殊的关系,即某个位置的累加值等于该位置的二进制表示中最低位的连续1的个数。树状数组的区间查询通过将原始数组转换为差分数组来实现,将查询问题转换为若干个单点查询。 线段树树状数组在解决问题时都具有一些特定的优势和适用场景。线段树适用于一些需要频繁修改和查询区间统计信息的问题,如区间最值、区间和等。而树状数组适用于一些需要频繁查询前缀和的问题,如求逆序对的数量或统计小于某个数的元素个数等。根据具体的问题需要,我们可以选择合适的数据结构来解决和优化计算效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值