HDOJ1176. 免费馅饼.(DP)

这篇博客讲述了HDOJ1176题目的解题过程,即如何在限制时间内接住最多的馅饼。作者通过动态规划的方法来解决,初始位置为5,每秒可移动一个位置。最初的状态转移方程导致WA,后来调整为从后往前的数塔方法,解决了TLE问题,最终得出AC代码。
摘要由CSDN通过智能技术生成

题目链接:

免费馅饼


题目大意:

这里写图片描述
初始位置为5,输入时间和位置,从1秒开始,每次可以移动一个位置,一秒时可接住4,5,6处馅饼,求最大接住馅饼数。


解题过程:

  • 刚开始就找到了状态转移方程:
  • j代表位置,i代表时间
    dp[j][i] = max(dp[j-1][i], dp[j-1][i-1], dp[j-1][i+1]) + data[j][i]; (j点位置曾经达到过)

  • 数塔是没想到,看到题解后才发现原来这可以归一类问题

  • 不过没想到状态转移方程出来后题目还是WA,莫名其妙,反复改后变成TLE了,介于这题cin都会TLE估计是卡了常数……
  • 于是发现别人数塔都是从后往前数的于是改了下状态转移方程A了,这样也不需要开data数组了。
  • 于是找了下之前数塔的题,发现直接都是从前往后数的,或者多开了一个数组……算是学到了。

题目分析:

  • 就是一个数塔
  • j代表位置,i代表时间
  • 状态转移方程:
    dp[j][i] = max(dp[j][i+1], dp[j-1][i+1], dp[j+1][i+1]) + dp[j][i]

AC代码:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

int dp[20][1123456];

int MaxOf3(int a, int b, int c){
    int max = (a > b) ? a : b;
    return (max > c) ? max : c;
}

int MaxOf2(int a, int b){
    return (a > b) ? a : b;
}

int main()
{
    int n;
    while ((scanf("%d", &n) != EOF) && n)
    {
        int maxt = 0, position, time;

        memset(dp, 0, sizeof(dp));

        for (int i = 0; i < n; i++)
        {
            scanf("%d %d", &position, &time);
            dp[position+1][time]++;
            if (maxt < time)
                maxt = time;
        }

        for (int i = maxt; i >= 0; i--)
        {
            for (int j = 1; j < 12; j++)
            {
                dp[j][i] = MaxOf3(dp[j][i+1], dp[j-1][i+1], dp[j+1][i+1]) + dp[j][i];
            }
        }

        cout << dp[6][0] << endl;
    }
}

从前往后TLE的错误代码:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

int dp[20][1123456];
int data[20][1123456];

int MaxOf3(int a, int b, int c){
    int max = (a > b) ? a : b;
    return (max > c) ? max : c;
}

int MaxOf2(int a, int b){
    return (a > b) ? a : b;
}

int main()
{
    int n;
    while ((scanf("%d", &n) != EOF) && n)
    {
        int maxt = 0, position, time;

        memset(dp, -1, sizeof(dp));
        memset(data, 0, sizeof(data));
        dp[6][0] = 0;

        for (int i = 0; i < n; i++)
        {
            scanf("%d %d", &position, &time);
            data[position+1][time]++;
            if (maxt < time)
                maxt = time;
        }


        for (int i = 1; i <= maxt; i++)
        {
            for (int j = 1; j < 12; j++)
            {
                dp[j][i] = MaxOf3(dp[j][i-1], dp[j-1][i-1], dp[j+1][i-1]);
                if (dp[j][i] != -1)
                    dp[j][i] += data[j][i];
            }
        }

        int ans = -1;
        for (int i = 0; i < 12; i++)
        {
            if (ans < dp[i][maxt])
                ans = dp[i][maxt];
        }
        cout << ans << endl;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值