Maximum Gap
来源: http://blog.csdn.net/acm_ted/article/details/44458121
链接:https://leetcode.com/problems/maximum-gap/
题解:
本题给你一个无序的数列,问在排序中相邻两数之差的最大值是多少,要求线性时间复杂度。
因为通常的排序都O(nlog2n),所以这里有选一些独特的办法。
观察可知,相邻两数之差最小是bucketLen=(max-min)/(len-1)[可以想象一个max-min长度的线被len-1等分]
我们可以把数据范围(min~max),分为(max-min)/bucketLen+1个区间,而两数之差的最大值一定在区间之间产生,因为区间的长度小于两数之差可能的最小值,因此答案一定在区间之间产生。所以只需统计区间的最大最小值,然后判断后区间最小值和前区间最大值之差即可。
以上也是桶排序的基本思想。
代码:
public class Solution {
class Bucket{
public int max,min;
//int volumn;
public Bucket(){
this.max=Integer.MIN_VALUE;
this.min=Integer.MAX_VALUE;
//this.volumn=0;
}
public Bucket(int x){
this.max=this.min=x;
}
}
public int maximumGap(int[] num) {
if(num==null||num.length<2) return 0;
if(num.length==2) return num[0]-num[1]>0?num[0]-num[1]:num[1]-num[0];//两个数的情况要特殊处理
int len=num.length;
int max=Integer.MIN_VALUE;
int min=Integer.MAX_VALUE;
for(int i=0;i<len;++i){
if(num[i]>max) max=num[i];
if(num[i]<min) min=num[i];
}
int gap=(max-min)/(len-1)+1;
Bucket[] buckets=new Bucket[(max-min)/gap+1];
for(int i=0,idx;i<len;++i){
idx=(num[i]-min)/gap;
if(buckets[idx]==null){
buckets[idx]=new Bucket(num[i]);
}
else if(buckets[idx].max<num[i]){
buckets[idx].max=num[i];
}
else if(buckets[idx].min>num[i]){
buckets[idx].min=num[i];
}
}
int pre=0,maxGap=Integer.MIN_VALUE;
for(int i=1;i<buckets.length;++i){
if(buckets[i]!=null){
if(maxGap<(buckets[i].min-buckets[pre].max)){
maxGap=buckets[i].min-buckets[pre].max;
}
pre=i;
}
}
return maxGap;
}
}
来源: http://blog.csdn.net/acm_ted/article/details/44458121