- 博客(195)
- 收藏
- 关注
转载 已接收的LLM相关的推荐系统论文整理
Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions(阿姆斯特丹,港中文)【让LLM对话:通过零样本LLM-LLM交互模拟人与人的对话QA】GPT4Table: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study(新加坡国立,微软)
2023-11-20 18:03:40
47
转载 WSDM‘2024 基于大模型(LLMs)的推荐系统 基于内容的多模态推荐系统(代码,多模态推荐数据集)
本研究聚焦于设计LLM增强多模态推荐模型,以有效应对稀疏的隐式反馈信号和低质量附加信息的挑战。通过对用户交互偏好的建模和去偏商品属性,我们提出了一种解决方案。为确保增强数据的质量,我们引入了一个去噪的增强鲁棒机制。尽管目前我们主要集中在使用LLMs对文本信息进行增强,未来的研究方向应该更进一步。[图片来自“Recommender Systems in the Era of Large Language Models (LLMs)”]
2023-11-13 16:30:57
95
原创 Latex 能用的textcolor
\textcolor{red}{red}\textcolor{green}{green}\textcolor{blue}{blue}\textcolor{cyan}{cyan}\textcolor{magenta}{magenta}\textcolor{yellow}{yellow}\textcolor{black}{black}\textcolor{white}{white}\textcolor{gray}{gray}\textcolor{brown}{brown}\textcolor
2023-09-23 16:13:26
104
转载 800 篇顶会论文纵览推荐系统的前沿进展(转载)
从早期基于用户或物品邻域的 UserKNN 和 ItemKNN 方法,到基于矩阵分解的 SVD++、BPRMF,再到近几年基于图神经网络的 NGCF、LightGCN 等模型,基于相似性进行推荐的思路时至今日仍然在新技术的推动下焕发着强大的生机。本文聚焦于推荐系统在学术研究方面的前沿进展,在之前整理的 Awesome-RSPapers 基础上扩展了近两年顶会中推荐系统相关的论文,涵盖 SIGIR、SIGKDD、RecSys、CIKM、AAAI、WSDM、WWW 的 20 次会议。欢迎大家关注和 Star~
2023-06-06 21:43:37
626
原创 最新推荐系统集锦
https://arxiv.org/abs/2302.11087User Behavior Modeling (UBM) plays a critical role in user interest learning, which has been extensively used in recommender systems. Crucial interactive patterns between users and items have been exploited, which brings com
2023-05-29 20:20:21
2455
原创 Diffusion理论基础(VDM, not SDE)
有两种形式:有两种形式:用公式2推导出ELBO:VAE的ELBO,reconstruction term(解码器)和prior matching term(编码器)的意义:VAE重参数化技巧:HVAE的推导:因为不需要编码器,是线性地加高丝噪声,所以有(30):VDM的推导:DDPM的推导:
2023-05-11 09:45:11
96
原创 杂乱无法分类的文章----VR, Oculus, UE
https://www.bilibili.com/video/BV1iz4y1S7bR/?spm_id_from=333.999.0.0&vd_source=e971baf3b64279d10895a4036356c154https://www.bilibili.com/video/BV1XG4y1V7kH/?spm_id_from=333.337.search-card.all.click&vd_source=e971baf3b64279d10895a4036356c154https://www.bili
2023-03-14 16:44:10
53
原创 深度学习基础----Exponential Moving Average
pytorch实现的时候非常需要的基础知识:(参考:)pytorch实现的时候非常需要的基础知识:(参考:)pytorch实现:(参考一下博客:)
2022-12-10 00:42:03
451
原创 深度学习基础----ROC曲线和AUC值
这个链接里的视频就很好:【小萌五分钟】机器学习 | 模型评估: ROC曲线与AUC值_哔哩哔哩_bilibili
2022-08-21 18:15:51
681
原创 快速读论文----AD-GCL:Adversarial Graph Augmentation to Improve Graph Contrastive Learning
AD-GCL:Adversarial Graph Augmentation to Improve Graph Contrastive Learning
2022-06-20 12:32:09
625
原创 PAT--B--数学
(读懂题目)1001// 1.没有读懂题目, 还是多读PAT原题#include <stdio.h>#include <iostream>using namespace std;int main(){ int n; scanf("%d", &n); int count = 0; while(n != 1){...
2022-03-04 19:23:50
113
原创 PAT----图----连通图
_________________________________________________________二.联通图for大循环遍历所有N个节点: DFS cnt++ DFS: visit[index]=1 for()if(!)DFS() _________________________________________________________连通图1013//1.有人说: 邻接矩阵遍历次数多, 会有超时问题, 用领接表会好一点//2.领接.
2022-03-04 19:22:52
165
原创 PAT----图----并查集
并查集, 连通分量1107// 1.如果说“error: ‘scanf’ was not declared in this scope”:// 具体的解决: include "stdio.h"// 统一解决: include <bits/stdc++.h>// 2.并查集:// (1)father数组: 大小--节点的个数。 初始化-...
2022-03-04 19:22:21
1183
原创 PAT----图----疑难
哈密顿图的判断1122//判断一个图是否哈密顿图: //1.序列不重复元素的个数是否图节点个数,即set.size()=n //2.序列数减一是否图节点个数, n=N=1 //3.首尾元素相同 //4.序列中两两节点是联通的//#include <bits/stdc++.h>#include "pch.h"#include <iostream>...
2022-03-04 19:21:53
76
原创 PAT----树----BST+AVL
————————————————————————————————BST————————————————————————————————BST的插入建立,镜像1043// 1.BST的建立: 空指针开始, 插入函数:赋值函数+递归调用,// 2.树的镜像:遍历的时候对换左右孩子节点的顺序就好// 3.两个vector可以直接比较//核心: 单序列建BST + 树的镜像BST //1.单序列建BST: // (1)BST树的创建只需要一个插入序列即可..
2022-03-04 19:20:09
83
原创 PAT----树----完全二叉树(堆)
________________________________________________________二.完全二叉树+堆________________________________________________________数组型树及:完全二叉树1110// 1.完全二叉树二层序遍历的关系: 层序遍历时,只要有以一个叶子不满, 并且之后还有有叶子的节点就不是完全二叉树// 2.注意:只有两个节点, 并且根节点左子树为空的特殊情况// 3.部分样例不过关不要.
2022-03-04 19:19:09
127
原创 PAT----树----LAC+疑难
后续,中序遍历, 层序输出1020// 1.基本叶子节点的类型// 2.根据后续遍历和中序遍历创建树:赋值根节点, 找到左边叶子个数,递归// 3.层序遍历BFS: 入队列, 打印空格, 打印节点, 继续插入节点// 4.先序遍历, 中序遍历, 后续遍历//#include <bits/stdc++.h>#include <iostream>#in...
2022-03-04 19:18:37
58
原创 PAT----树----序列建树+遍历 (节点+数组)
_________________________________________________________一. 两个序列建树, 更换方式输出struct node creat 递归返回条件 新建root 得到叶子长度 递归(参数) 返回root 普通型: 节点量<30 给出叶子节点型: 前序可以得到中序, 节点量<30 数据超大型: 优化查找in根节点, 使用hash表(map), 数据量<5000 前序, 后序序列建树 看似两序列建..
2022-03-04 19:17:00
249
原创 快速读论文----IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Mode
本文统一介绍了信息检索建模中的两种思想流派:生成检索侧重于预测给定查询的相关文档,而判别检索侧重于预测给定查询-文档对的相关性。我们提出了一个博弈论的极大极小博弈来迭代优化这两个模型。一方面,判别模型旨在从标记和未标记数据中挖掘信号,为训练生成模型以拟合给定查询的文档的潜在相关性分布提供指导。另一方面,生成模型充当当前判别模型的攻击者,通过最小化其判别目标,以对抗的方式为判别模型生成困难的示例。通过这两种模型之间的竞争,我们证明了统一框架利用了两种思维方式:(i)生成模型通过来自判别模型的信号学习拟合文档的
2022-03-04 14:10:34
198
原创 RLNF----Reinforcement Learning based Noise Filtering for Click-Through Rate Prediction
摘要:点击率(CTR)预测旨在回忆用户感兴趣的广告,并引导用户点击,这对于各种在线广告系统至关重要。在实践中,CTR预测通常被描述为一个传统的二元分类问题,其中点击的广告是正样本,而其他则是负样本。然而,直接将未被贴上的广告视为负面样本会受到严重的标签噪音问题的影响,因为用户对一些广告感兴趣但不点击存在许多原因。为了解决这一严重问题,我们提出了一种基于强化学习的噪声滤波方法,称为RLNF,它使用噪声滤波器来选择有效的负样本。在RLNF中,可以使用这些选定的有效负样本来增强CTR预测模型,同时可以通过强化
2022-02-24 08:58:22
581
原创 快速读文章-Hierarchical User Intent Graph Network for Multimedia Recommendation
摘要:了解用户对项目上下文的偏好是获得高质量多媒体推荐的关键。通常,项目的预先存在的特征来自预先训练的模型(例如,从某些神经网络提取的微视频的视觉特征),然后引入推荐框架(例如,协同过滤)以捕获用户偏好。然而,我们认为这样的范例不足以输出令人满意的用户表示,这很难很好地描述个人兴趣。关键原因是,目前的作品基本上没有触及用户意图,因此未能对用户的这种信息表示进行编码。在这项工作中,我们的目标是从项目的交互模式中学习多层次的用户意图,从而获得用户和项目的高质量表示,并进一步提高推荐性能。为此,我们开发了一个新
2022-02-20 19:53:54
675
原创 快速读文章-Adversarial Training Towards Robust Multimedia Recommender System
摘要:随着网络上多媒体内容的普及,迫切需要开发能够有效利用多媒体数据中丰富信号的推荐解决方案。由于深度神经网络在表征学习中的成功,多媒体推荐的最新进展主要集中在探索深度学习方法以提高推荐精度上。然而,迄今为止,很少有人研究多媒体表示的健壮性及其对多媒体推荐性能的影响。本文对多媒体推荐系统的鲁棒性进行了研究。通过使用最先进的推荐框架和深度图像特征,我们证明了整个系统的鲁棒性不强,因此,对输入图像进行小的(但有目的的)扰动将严重降低推荐精度。这意味着多媒体推荐系统在预测用户偏好方面可能存在弱点,更重要的是,
2022-02-20 19:47:10
1757
原创 快速读文章-Mining Latent Structures for Multimedia Recommendation
摘要:多媒体内容在现代网络时代占主导地位。在快速发展的推荐系统中,调查用户如何与多模式项目交互是一个持续关注的问题。以前的大部分工作都集中在建模用户项交互,并将多模态特征作为辅助信息。然而,这个方案并不是为多媒体设计的正式建议具体来说,只有协作项目-项目关系通过高阶项目-用户-项目关系隐式建模。考虑到项目以多种形式与丰富的内容相关联,我们认为这些多模态内容背后潜在的语义项目结构可能有助于学习更好的项目表示,并进一步促进推荐。为此,我们提出了一种用于多模式推荐的潜在结构挖掘方法,为简洁起见,我们称之为
2022-02-20 19:16:38
1826
原创 快速读论文-VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback
摘要:现代推荐系统通过发现或“挑逗”编码项目属性和用户偏好的潜在维度,对人和项目进行建模。关键的是,这些维度是根据用户反馈发现的,通常是隐式的(比如购买他的保守党、浏览日志等);此外,一些推荐系统还利用辅助信息,如产品属性、时态信息或评论文本。然而,现有的个性化推荐和排名方法通常忽略的一个重要特征是所考虑项目的视觉效果。在本文中,我们提出了一个可扩展的因子分解模型,将视觉信号纳入人们观点的预测因素中,并将其应用于大量真实数据集。我们利用(预先训练的)深层网络从产品图像中提取的视觉特征,在此基础上,我们学
2022-02-20 17:45:00
2154
原创 快速读论文-Adversarial Feature Translation for Multi-domain Recommendation
现实世界中的超级平台,如谷歌和微信,通常会有不同的推荐场景,为用户的不同需求提供不同的项目。多域推荐(MDR)是为了同时改进所有推荐域而提出的,其关键是从所有推荐域中获取特定于领域的信息特征。为了解决这个问题,我们提出了一种新的MDR对抗性特征翻译(AFT)模型,该模型在生成的对抗性网络框架下学习不同领域之间的特征翻译。确切地说,在多域生成器中,我们提出了一种特定于域的屏蔽编码器来突出域间的特征交互,然后通过转换器和特定于域的注意来聚合这些特征。在多领域鉴别器中,受知识表示学习的启发,我们通过两步特征转换明
2022-02-18 15:13:26
457
原创 快速读论文----Graph Embedding Framework Based on Adversarial and Random Walk Regularization
图嵌入的目的是将节点结构和属性信息表示到低维向量空间中,以便使用简单的机器学习算法轻松执行一些下游应用任务,如节点分类、链接预测、社区检测和推荐。图卷积网络是一种用于图的机器学习的神经网络框架。由于其强大的图形数据建模能力,它是目前图形嵌入的最佳选择。然而,现有的大多数基于图卷积网络的嵌入算法不仅忽略了潜在码的数据分布,而且失去了图中节点间的高阶邻近性,导致嵌入效果较差。为了缓解这个问题,我们研究了如何强制执行潜在代码来匹配先验分布,并引入随机游动来保持图中的高阶邻近性。在本文中,我们提出了一种新的图嵌入框
2021-12-31 15:02:41
472
WSDM2024ID与Modality大模型(LLMs)通过图数据增强辅助基于内容的多模态推荐系统
2023-11-21
LLMRec-基于大语言模型(ChatGPT)的个性化基于内容的多模态推荐系统.docx
2023-11-21
LLMRec-基于pormpt提示大语言模型(LLMs)的个性化基于内容的多模态推荐系统
2023-11-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人