tensorflow中TensorBoard用法:

TensorBoard通过summary operations记录数据到event files中,并通过指定的logdir启动可视化界面。主要包括SCALARS(折线图)、IMAGES(图像)、GRAPHS(模型图)和HISTOGRAMS(直方图)等功能,用于观察模型训练过程中的关键指标、输入图像、网络结构及变量分布等。
摘要由CSDN通过智能技术生成

TensorBoard 工作原理:

  • 简单来说,TensorBoard 是通过一些操作(summary operations)将数据记录到文件(event files)中,然后再读取文件来完成作图的。
  • 工作步骤:
    • Summary:对需要可视化的变量进行summary操作,以记录变量的日志信息。
    • Merge:使用 tf.summary.merge_all 来将定义的多个summary操作聚合成一个操作,由它来产生所有 summary 数据。
    • Writer:使用tf.summary.FileWriter() 定义一个写summary数据的操作,定义时需要指定一个目录。
    • Run:在运行的时候使用add_summary()来将某一步的summary数据记录到文件中。
    • 启动命令:
      当训练完成后,使用 tensorboard --logdir=path/to/log-directory 来启动TensorBoard,按照提示在浏览器打开页面,
      注意把 path/to/log-directory 替换成你上面指定的目录。

Tensorboard的大纲:

SCALARS(折线图)

作用:

  • 用来显示标量信息,一般用来保存loss,accuary,学习率等数据,比较常用

函数原型:

tf.summary.scalar(name, tensor, collections=None, family=None)

参数:

  • name: 给保存的数据的命名;可以理解为图的标题;在 GRAPHS 中则是该节点的名字
  • tensor: 要保存的tensor,在scalar函数中应该是一个标量,如当前的学习率、Loss等;

IMAGES(图像)

作用:

  • 如果你的模型输入是图像,然后你想看看模型每次的输入图像是什么样的,以保证每次输入的图像没有问题(因为你可能在模型中对图像做了某种变换,而这种变换是很容易出问题的),IMAGES 面板就是干这个的,它可以显示出相应的输入图像,默认显示最新的输入图像,如下图:

函数原型:

tf.s
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值