TensorBoard 工作原理:
- 简单来说,TensorBoard 是通过一些操作(summary operations)将数据记录到文件(event files)中,然后再读取文件来完成作图的。
- 工作步骤:
- Summary:对需要可视化的变量进行summary操作,以记录变量的日志信息。
- Merge:使用 tf.summary.merge_all 来将定义的多个summary操作聚合成一个操作,由它来产生所有 summary 数据。
- Writer:使用tf.summary.FileWriter() 定义一个写summary数据的操作,定义时需要指定一个目录。
- Run:在运行的时候使用add_summary()来将某一步的summary数据记录到文件中。
- 启动命令:
当训练完成后,使用 tensorboard --logdir=path/to/log-directory 来启动TensorBoard,按照提示在浏览器打开页面,
注意把 path/to/log-directory 替换成你上面指定的目录。
Tensorboard的大纲:
SCALARS(折线图)
作用:
- 用来显示标量信息,一般用来保存loss,accuary,学习率等数据,比较常用
函数原型:
tf.summary.scalar(name, tensor, collections=None, family=None)
参数:
- name: 给保存的数据的命名;可以理解为图的标题;在 GRAPHS 中则是该节点的名字
- tensor: 要保存的tensor,在scalar函数中应该是一个标量,如当前的学习率、Loss等;
IMAGES(图像)
作用:
- 如果你的模型输入是图像,然后你想看看模型每次的输入图像是什么样的,以保证每次输入的图像没有问题(因为你可能在模型中对图像做了某种变换,而这种变换是很容易出问题的),IMAGES 面板就是干这个的,它可以显示出相应的输入图像,默认显示最新的输入图像,如下图:
函数原型:
tf.s