线段树 区间更新 区间求和以及最值

这篇博客介绍了如何使用线段树数据结构进行区间更新和区间查询操作,包括区间和、最大值和最小值的维护。通过示例代码详细阐述了线段树的构建、更新和查询功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

<pre name="code" class="cpp">#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <queue>
#define MAXN 100010
#define inf 0x3f3f3f3f

using namespace std;

struct node{
    int l,r;//区间[l,r]
    int add;//区间的延时标记
    int sum;//区间和
    int mx; //区间最大值
    int mn; //区间最小值
}tree[MAXN<<2];//一定要开到4倍多的空间

void pushup(int index){
    tree[index].sum = tree[index<<1].sum+tree[index<<1|1].sum;
    tree[index].mx = max(tree[index<<1].mx,tree[index<<1|1].mx);
    tree[index].mn = min(tree[index<<1].mn,tree[index<<1|1].mn);
}
void pushdown(int index){
    //说明该区间之前更新过
    //要想更新该区间下面的子区间,就要把上次更新该区间的值向下更新
    if(tree[index].add > 0){
        //替换原来的值
        /*
        tree[index<<1].sum = (tree[index<<1].r-tree[index<<1].l+1)*tree[index].add;
        tree[index<<1|1].sum = (tree[index<<1|1].r-tree[index<<1|1].l+1)*tree[index].add;
        tree[index<<1].mx = tree[index].add;
        tree[index<<1|1].mx = tree[index].add;
        tree[index<<1].mn = tree[index].add;
        tree[index<<1|1].mn = tree[index].add;
        tree[index<<1].add = tree[index].add;
        tree[index<<1|1].add = tree[index].add;
        tree[index].add = 0;*/
        //在原来的值的基础上加上val
        
        tree[index<<1].sum += (tree[index<<1].r-tree[index<<1].l+1)*tree[index].add;
        tree[index<<1|1].sum +=(tree[index<<1|1].r-tree[index<<1|1].l+1)*tree[index].add;
        tree[index<<1].mx += tree[index].add;
        tree[index<<1|1].mx += tree[index].add;
        tree[index<<1].mn += tree[index].add;
        tree[index<<1|1].mn += tree[index].add;
        tree[index<<1].add += tree[index].add;
        tree[index<<1|1].add += tree[index].add;
        tree[index].add = 0;

    }
}
void build(int l,int r,int index){
    tree[index].l = l;
    tree[index].r = r;
    tree[index].add = 0;//刚开始一定要清0
    if(l == r){
        scanf("%d",&tree[index].sum);
        tree[index].mn = tree[index].mx = tree[index].sum;
        return ;
    }
    int mid = (l+r)>>1;
    build(l,mid,index<<1);
    build(mid+1,r,index<<1|1);
    pushup(index);
}
void updata(int l,int r,int index,int val){
    if(l <= tree[index].l && r >= tree[index].r){
        /*把原来的值替换成val,因为该区间有tree[index].r-tree[index].l+1
        个数,所以区间和 以及 最值为:
        */
        /*tree[index].sum = (tree[index].r-tree[index].l+1)*val;
        tree[index].mn = val;
        tree[index].mx = val;
        tree[index].add = val;//延时标记*/
        //在原来的值的基础上加上val,因为该区间有tree[index].r-tree[index].l+1
        //个数,所以区间和 以及 最值为:
        tree[index].sum += (tree[index].r-tree[index].l+1)*val;
        tree[index].mn += val;
        tree[index].mx += val;
        tree[index].add += val;//延时标记

        return ;
    }
    pushdown(index);
    int mid = (tree[index].l+tree[index].r)>>1;
    if(l <= mid){
        updata(l,r,index<<1,val);
    }
    if(r > mid){
        updata(l,r,index<<1|1,val);
    }
    pushup(index);
}
int query(int l,int r,int index){
    if(l <= tree[index].l && r >= tree[index].r){
        //return tree[index].sum;
        return tree[index].mx;
        //return tree[index].mn;
    }
    pushdown(index);
    int mid = (tree[index].l+tree[index].r)>>1;
    int ans = 0;
    int Max = 0;
    int Min = inf;
    if(l <= mid){
        ans += query(l,r,index<<1);
        Max = max(query(l,r,index<<1),Max);
        Min = min(query(l,r,index<<1),Min);
    }
    if(r > mid){
        ans += query(l,r,index<<1|1);
        Max = max(query(l,r,index<<1|1),Max);
        Min = min(query(l,r,index<<1|1),Min);
    }
    //return ans;
    return Max;
    //return Min;
}
int main()
{
    int n,m,q,x,y,z;
    while(~scanf("%d%d",&n,&m)){
        build(1,n,1);
        while(m--){
            scanf("%d",&q);
            if(q == 1){
                cout<<"查询:(x,y)"<<endl;
                scanf("%d %d",&x,&y);
                cout<<query(x,y,1)<<endl;
            }
            else{
                cout<<"更新(x,y)为z:"<<endl;
                scanf("%d %d %d",&x,&y,&z);
                updata(x,y,1,z);
                for(int i = 1; i <= n; ++i){
                    printf("a[%d] = %d\n",i,query(i,i,1));
                }
            }
        }
    }
    return 0;
}



                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值