UVA(348)——Optimal Array Multiplication Sequence(区间dp)

题意:

就是矩阵链乘,然后让你输出符合最小运算量的路径。

思路:

矩阵链乘的状态是:dp[i][j]:表示从i到j的矩阵合并起来需要进行多少的运算量。

状态转移方程为:dp[i][j]=min(dp[i][k]+dp[k+1][j]+x[i]*y[k]*y[j]); 注意后面是y[k],因为i~k合并后列数就是y[k]了,然后后面是y[j],因为我们要将这两个大矩形合并,后面的列数也变成了y[j]。

然后是记录路径的问题,这个很巧妙,我一开始没有想到,但是这个和bfs里面输出路径的方式是相似的。

设一个数组par[i][j],表示从i~j这一段区间里面我们的断点在哪个位置,然后输出的时候print(i,par[i][j]), print(par[i][j]+1,j) 这样分成两段来输出就好了。

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
using namespace std;
#define maxn 15
#define inf 99999999
int n;
int x[maxn],y[maxn];
int dp[maxn][maxn];
int par[maxn][maxn];
void print(int i,int j){
	if(i==j){
		printf("A%d",i);
		return ;
	}
	if(i>j) return ;
	printf("(");
	print(i,par[i][j]);
	printf(" x ");
	print(par[i][j]+1,j);
	printf(")");
}
int main(){
	int jj=1;
	while(~scanf("%d",&n)){
		if(n==0) break;
		memset(dp,0,sizeof(dp));
		memset(par,0,sizeof(par));
		for(int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
		for(int len=2;len<=n;len++){
			for(int s=1;s+len-1<=n;s++){
				int e=s+len-1;
				dp[s][e]=inf;
				par[s][e]=s;
				for(int k=s;k<e;k++){
					int t=dp[s][k]+dp[k+1][e]+x[s]*y[k]*y[e];
					if(dp[s][e]>t){
						dp[s][e]=t;
						par[s][e]=k;
					}
				}
			}
		}
		printf("Case %d: ",jj++);
		print(1,n);
		printf("\n");
	}
}
/*
3
1 5
5 20
20 1
0
*/

(2)递归写法

说实话我不是很擅长递归写法,因为不太明白递归写法的结束条件是什么。

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
using namespace std;
#define maxn 15
#define inf 99999999
int n;
int x[maxn],y[maxn];
int dp[maxn][maxn];
int par[maxn][maxn];
int DP(int i,int j){
	if(dp[i][j]>0) return dp[i][j];
	if(i==j) return dp[i][j]=0;
	int res=inf;
	for(int k=i;k<j;k++){
		int t=DP(i,k)+DP(k+1,j)+x[i]*y[k]*y[j];
		if(t<res){
			res=t;
			par[i][j]=k;
		}
	}
	return dp[i][j]=res;
}
void print(int i,int j){
	if(i>j) return ;
	if(i==j){
		printf("A%d",i);
		return ;
	}
	printf("(");
	print(i,par[i][j]);
	printf(" x ");
	print(par[i][j]+1,j);
	printf(")");
}
int main(){
	int jj=1;
	while(~scanf("%d",&n)){
		if(n==0) break;
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
		DP(1,n);
		printf("Case %d: ",jj++);
		print(1,n);
		printf("\n");
	}
}
/*
3
1 5
5 20
20 1
0
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值