BNUOJ 34985 Elegant String DP+矩阵优化

【题目链接】

http://www.bnuoj.com/v3/problem_show.php?pid=34985

【题目大意】

你有[0,k]k+1个字符,现在你要构造长度为n的字符串。要求任意连续k+1个字符不能是[0,k]的一个排列,问你有多少种构造方法。

【思路】

n很大,所以第一直觉,这题不是DP+矩阵,就是数学(比方容斥)。

如果用dp[i][j]表示长度为i,状态为j,满足题意的方法数。现在我们去思考状态j表示什么?

直接进制压缩?好像太大了。但是注意到,从最后一个字符往前数,如果一个字符在后面出现了。这意味什么?这意味着,如果包括这个重复字符,再也构造不出来非法串(有某个字符出现了2次或以上)。

那么,我们不妨让j表示,从最后一个字符开始,不出现重复字符的最大长度。比方“ ... 3 3 2 3 1 ”对应的状态为j == 3,“... 1 2 3 1”也对应状态j == 3。这个状态的转移是很简单的,如果你放不同于最后j个字符的字符,转移到j + 1。而填最后1个,最后2个...最后j个相同的字符,对应着状态1 - j 各一次。

当然,直接DP,复杂度为O(n*k*k)。我们用矩阵优化一下,复杂度降为O(log(n)*k^3)。

//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<cctype>
#include<string>
#include<algorithm>
#include<iostream>
#include<ctime>
#include<map>
#include<set>
using namespace std;
#define MP(x,y) make_pair((x),(y))
#define PB(x) push_back(x)
typedef long long LL;
//typedef unsigned __int64 ULL;
/* ****************** */
const int INF = 100011122;
const double INFF = 1e100;
const double eps = 1e-8;
const LL mod = 20140518;
const int NN = 11;
const int MM = 5000010;
/* ****************** */

LL xx[NN][NN], ans[NN][NN], temp[NN][NN];

void jz_cf(LL a[][NN],LL b[][NN],LL c[][NN],int n)
{
    int i,j,k;
    for(i = 1; i <= n; i ++)
        for(j = 1; j <= n; j ++)
        {
            c[i][j] = 0;
            for(k = 1; k <= n; k ++)
            {
                c[i][j] += a[i][k]*b[k][j];
                c[i][j] %= mod;
            }
        }
    for(i = 1; i <= n; i ++)
        for(j = 1; j <= n; j ++)
            a[i][j] = c[i][j];
}

LL solve(LL n,int k)
{
    memset(xx, 0, sizeof(xx));
    memset(ans, 0, sizeof(ans));
    int i, j;
    LL sum = 0;
    for(i = 1; i <= k; i++)
    {
        ans[i][i] = 1;
        for(j = 1; j <= k + 1; j++)
        {
            if(j <= i)
                xx[j][i]++;
            else
                xx[i+1][i]++;
        }
    }

    for(n--; n > 0; n>>=1)
    {
        if(n&1)
            jz_cf(ans,xx,temp,k);
        jz_cf(xx,xx,temp,k);
    }

    for(i = 1; i <= k; i ++)
    {
        sum += ans[i][1]*(k+1);
        sum %= mod;
    }
    return sum;
}

int main()
{
    int k, cas, ee = 0;
    LL n, ans;
    scanf ("%d", &cas);
    while (cas--)
    {
        cin >> n >> k;
        ans = solve(n, k);
        printf("Case #%d: %lld\n", ++ee, ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值