题意:给你n个点的一棵树,每个点有一个买书或者卖书的费用w,树的边也有花费,求从一个点买书到另一个点卖书得到差价的最大值。
题解:建立两个虚拟源点和一个虚拟汇点,第一个虚拟源点连接第二个虚拟源点流量是1控制路径只能有一条,第二个虚拟源点连接n个点流量是1费用是w[i],表示买书的花费,虚拟汇点连接n个点 流量是1费用是-w[i]表示卖书的价格。
AC代码:
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;
const int oo=2e9; //无穷
const int mm=1000000; //边
const int mn=100005; //点
int node,src,dest,edge;
int ver[mm],flow[mm],cost[mm],nex[mm];
int head[mn],dis[mn],p[mn],q[mn],vis[mn];
/**这些变量基本与最大流相同,增加了
cost 表示边的费用,
p 记录可行流上节点对应的反向边
*/
void prepare(int _node,int _src,int _dest) //预处理 点的个数 起点 终点
{
node=_node,src=_src,dest=_dest;
for(int i=0; i<node; i++)head[i]=-1,vis[i]=0;
edge=0;
}
void addedge(int u,int v,int f,int c)
{
ver[edge]=v,flow[edge]=f,cost[edge]=c,nex[edge]=head[u],head[u]=edge++;
ver[edge]=u,flow[edge]=0,cost[edge]=-c,nex[edge]=head[v],head[v]=edge++;
}
/**以上同最大流*/
/**spfa 求最短路,并用 p 记录最短路上的边*/
bool spfa()
{
int i,u,v,l,r=0,tmp;
for(i=0; i<node; ++i)dis[i]=oo;
dis[q[r++]=src]=0;
p[src]=p[dest]=-1;
for(l=0; l!=r; (++l>=mn)?l=0:l)
for(i=head[u=q[l]],vis[u]=0; i>=0; i=nex[i])
if(flow[i]&&dis[v=ver[i]]>(tmp=dis[u]+cost[i]))
{
dis[v]=tmp;
p[v]=i^1;
if(vis[v]) continue;
vis[q[r++]=v]=1;
if(r>=mn)r=0;
}
return p[dest]>-1;
}
/**源点到汇点的一条最短路即可行流,不断的找这样的可行流*/
int SpfaFlow()
{
int i,ret=0,delta;
while(spfa())
{
for(i=p[dest],delta=oo; i>=0; i=p[ver[i]])
if(flow[i^1]<delta)delta=flow[i^1];
for(i=p[dest]; i>=0; i=p[ver[i]])
flow[i]+=delta,flow[i^1]-=delta;
ret+=delta*dis[dest];
}
return ret;
}
int a[100005];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
int s=0,t=100002;
prepare(100003,s,t);
addedge(s,100001,1,0);
for(int i=1;i<=n;i++)
addedge(100001,i,1,a[i]);
for(int i=1;i<=n;i++)
addedge(i,t,1,-a[i]);
for(int i=0;i<n-1;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,1,w);
addedge(v,u,1,w);
}
printf("%d\n",-SpfaFlow());
}
}