确定最小的正整数n,使得n!的结尾恰好有1987个0

题目:确定最小的正整数n,使得n!的结尾恰好有1987个0。


分析:我们首先来认识一个结论

    设进制表示下各位数字之和,那么中素数的幂的指数为 



那么现在来证明这个结论:

    设进制表示为,那么

中素数的指数为


   


这样,题目就有了思路。我们知道末尾0的个数取决于中素数5的幂指数。也就是说确定一个数,使得中5的幂指数为1987。即

                                                         


那么,对于来说不会很大。我们先来估计求一下,计算,那么得到


,很明显7948不够大,那么我们可以从7948开始往上枚举,直到计算出为止,最终得到



要实现将输入的一个正整数逆序输出,并忽略结尾,可以按照如下的步骤来进行: 1. **获取用户输入**:首先需要从用户那里接收一个正整数作为输入。 2. **去掉尾部所有0**:可以通过不断地对数字取余运算检查其是否0并除以10来逐步移除最后一位直到不是0为止。 3. **计算反转值**:接着利用循环结构每次取出剩下的数字的最后一部分添加到结果变量里同时更新原数值以便下次迭代能处理新的最后一个位元。具体来说就是设置初始返回的结果值result=0然后每一轮都将当前number%10加上去再把个thing乘十准备加入下一次的一個數字(除了最后一次),并且记得不断用number /= 10减少源数据长度直至归停止操作。 4. **输出最终答案**:当所有的非数字都被成功逆转过来以后就可以打印出这个新形成的整数了。 下面是一个简单的伪代码示例帮助理解该算法过程: ``` function reverseNumberWithoutTrailingZeros(n): while n % 10 == 0 and n != 0: n = n / 10 reversedNum = 0 while n > 0: remainder = n % 10 reversedNum = (reversedNum * 10) + remainder n = floor(n / 10) return reversedNum input_number = readInput() output_result = reverseNumberWithoutTrailingZeros(input_number) print(output_result) ``` 实际应用中还需考虑语言特性做适当调比如类型转换等细节问题。以上便是针对这个问题的一种解决方案思路解析啦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值