题意:给三个数m,n,k, 0<m,n,k<10^9,求与m,n同时互质的第k个正整数(按从小到达顺序排列).
思路:二分+容斥原理
由于所找的数与m,n互质,那么这个数不能含有m,n所包含的素因子。但是k很大,不可能一个一个生成。于是二分,找到最小
的x,使得小于或等于x的数中满足条件的数的个数大于或等于k,则这个最小值即为答案。
在判断小于或等于x的数中满足条件的数的个数时,可用容斥原理找出这些数中是m,n所含质因子倍数的数的个数。x减去所得
个数即为小于或等于x的数中满足条件的数的个数。
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
using namespace std;
typedef long long LL;
const int N=1000005;
const LL INF=(LL)1<<62;
bool prime[N];
LL p[N];
LL fac[N];
LL k,cnt,num,ans,n,m,K;
void isprime()
{
k=0;
int i,j;
memset(prime,true,sizeof(prime));
for(i=2; i<N; i++)
{
if(prime[i])
{
p[k++]=i;
for(j=i+i; j<N; j+=i)
{
prime[j]=false;
}
}
}
}
void Solve(LL m,LL n)
{
cnt=0;
LL i;
for(i=0; p[i]*p[i]<=n; i++)
{
if(n%p[i]==0)
{
fac[cnt++]=p[i];
while(n%p[i]==0) n/=p[i];
}
}
if(n>1)
fac[cnt++]=n;
for(i=0; p[i]*p[i]<=m; i++)
{
if(m%p[i]==0)
{
fac[cnt++]=p[i];
while(m%p[i]==0) m/=p[i];
}
}
if(m>1)
fac[cnt++]=m;
}
void dfs(LL k,LL t,LL s,LL n)
{
if(k==num)
{
if(t&1) ans-=n/s;
else ans+=n/s;
return;
}
dfs(k+1,t,s,n);
dfs(k+1,t+1,s*fac[k],n);
}
LL Binary()
{
LL l=1,r=INF,mid,ret;
while(l<=r)
{
mid=(l+r)/2;
ans=0;
dfs(0,0,1,mid);
if(ans>=K)
{
ret=mid;
r=mid-1;
}
else
l=mid+1;
}
return ret;
}
int main()
{
isprime();
LL t,ct,tt=1;
scanf("%I64d",&t);
while(t--)
{
scanf("%I64d%I64d%I64d",&m,&n,&K);
printf("Case %d: ",tt++);
if(n==1&&m==1)
{
printf("%I64d\n",k);
continue;
}
Solve(m,n);
sort(fac,fac+cnt);
num=1;
for(LL i=1; i<cnt; i++)
{
if(fac[i]!=fac[i-1])
{
fac[num++]=fac[i];
}
}
ct=num;
printf("%I64d\n",Binary());
}
return 0;
}