HDU4135 Co-prime【容斥原理】3方法

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/deepseazbw/article/details/76187211

Problem Description

Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.

Input

The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).

Output

For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.

Sample Input

2
1 10 2
3 15 5

Sample Output

Case #1: 5
Case #2: 10

Hint

In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
题意:计算从a到b中与n的共同因子只有1的数字个数。
思路:欧拉函数肯定在这里是无法应用的,这里应用了容斥原理,

如上图为容斥原理的思路:
1.位运算遇到集合是奇数的就加,偶数的就减
2.队列数组
3.递归算法
分析:
n和1——a-1的不互素个数num1,互素个数a-1-num1
n和1——b的不互素个数num2,互素个数b-num2
最后结果为b-num2-(a-1-num1)
1.位运算:(素因子的个数全局变量cnt记录)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
ll prime[100];
int cnt;
void init(int m)
{
     cnt=0;
    for(ll i=2;i*i<m;i++)
    if(m%i==0){
        prime[cnt++]=i;//prime储存素因子,cnt为素因子的个数
        while(m%i==0){
          m/=i;
        }
    }
    if(m>1)
        prime[cnt++]=m;//这里是因为有的n的因子大于sqrt(n),比如14,他的素因子有2,7,
}
ll rong_chi(ll cur)
{
    ll res,ans=0;
    for(ll i=1;i<ll(1<<cnt);i++)
    {
        res=1;
        ll flag=0;
        for(ll j=0;j<cnt;j++)
        {
            if(i&(ll(1<<j))) //出现因子
            {
                flag++;   //统计出现的集合个数
                res*=prime[j];  //取并之后的因子乘积
            }
        }
        if(flag&1)
            ans+=cur/res;  //奇数 加
        else
            ans-=cur/res; //偶数 减
    }
    return ans;
}
int main()
{
    ll t;
    cin>>t;
    int icase=0;
    while(t--){
        memset(prime,0,sizeof(prime));
        ll a,b,n;
        int len=0;
        cin>>a>>b>>n;
        init(n);

        printf("Case #%d: %lld\n",++icase,b-rong_chi(b)-(a-1-rong_chi(a-1)));
    }
    return 0;
}


2.队列数组(素因子个数用全局变量cnt记录)
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
int prime[50],cnt;
int sum[1<<11],q;
void init(int m)
{
     cnt=0;
    for(ll i=2;i*i<m;i++)
    if(m%i==0){
        prime[cnt++]=i;//prime储存素因子,cnt为素因子的个数
        while(m%i==0){
          m/=i;
        }
    }
    if(m>1)
        prime[cnt++]=m;//这里是因为有的n的因子大于sqrt(n),比如14,他的素因子有2,7,
}
ll que[100005];
ll solve(ll m)
{
    ll k,front=0,sum=0;
    que[front++]=-1;
    for(ll i=0;i<cnt;i++)//所有的素因子都加入队列
    {
        k=front; //记录上一次循环的所有因子的组合方式的个数
        for(ll j=0; j<k;j++)//用这次的因子a[i]与前面的k中组合进行组合
         que[front++]=que[j]*prime[i]*-1;//  *(-1) 是因为容斥定理 “奇加偶减”性质
    }
    for(ll i=1;i<front;i++)//front为n的素因子的所有可能的组合方式,front=2^cnt-1,这里有效的把二进制位实现的所有种类个数从循环拿到队列中来了,所以这就适用于cnt的个数(也可以说n)较大的情况
        sum+=m/que[i];
    return sum; //sum为是n的因子的倍数的个数
}
int main()
{
    int t,icase=0;
    ll a,b,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lld%lld%lld",&a,&b,&n);
        init(n);
        printf("Case #%d: %lld\n",++icase,b-solve(b)-(a-1-solve(a-1)));
    }
    return 0;
}


3.递归(素因子的个数记录在全局变量cnt)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int prime[20],cnt;
void Init(int m)
{
    int i;
    cnt=0;
    for(i=2;i*i<=m;i++)
        if(m%i==0){
        	prime[cnt++]=i;
        	while(m%i==0)	m/=i;
        }
    if(m!=1)	prime[cnt++]=m;

}
ll Noprime(int m,ll n,int x)
{
    ll i,ret=0;
    for(i=x;i<cnt;i++)
        ret+=n/prime[i]-Noprime(m,n/prime[i],i+1);
    return ret;
}

int main()
{
    int t,T,N;
    ll A,B;
    scanf("%d",&T);
    for(t=1;t<=T;t++)
    {
        scanf("%lld%lld%d",&A,&B,&N);  Init(N);
        printf("Case #%d: %lld\n",t,B-Noprime(N,B,0)-(A-1-Noprime(N,A-1,0)));
    }
    return 0;
}
以上三分代码的容斥原理的部分都可以当做容斥原理的模板



阅读更多
换一批

没有更多推荐了,返回首页