17.监控工作流

17.监控工作流

Monitoring Workflows
If you run a workflow or open an existing execution, you are presented with the execution
monitor. The title section identifies the workflow, and the badge indicates its status.
Executions will be in either a Running, Success, or Error state.
Here you will find options to access the workflow editor, cancel a running execution, or
refresh the data. Click the ellipsis to rerun the last execution or open the execution history of
the workflow.
The execution monitor pane shows the workflow, its tasks, and the runtime state. Color and
status label on the task node indicate the status of the task. Task nodes identify the runtime
once they’re in their final state.
Choose a node to view details and access the log pane which provides details of the selection.
For example, the output of a task produced during execution. You can use this insight into
what occurred during processing to provide details for analysis in case of an error.
The details pane provides access to the detailed attributes of the execution, including start
and end times. Tasks with predecessors will also show the conditions of their evaluation
results identifying why a task ran or failed.
The Input tab provides access to the values used to complete a task. This information
combined with the log and results form an audit trail of the execution.
The Params tab is only available for the workflow when selecting a trigger. It provides access
to the parameters passed to the execution. And the results tab is only available if you select a
task. It displays the result produced by task completion.
Utilizing these various views allows you to quickly monitor your workflows and troubleshoot
any errors that occur.

内容概要:本文详细介绍了一个基于Java和Vue的迁移学习与少样本图像分类系统的设计与实现,涵盖项目背景、目标、技术架构、核心算法、前后端代码实现、数据库设计、部署方案及应用领域。系统通过融合迁移学习与少样本学习技术,解决实际场景中样本稀缺、标注成本高、模型泛化能力差等问题,支持数据增强、预训练模型微调、原型网络(ProtoNet)等算法,并实现前后端分离、模块化设计、可视化监控与自动化工作流。项目提供完整的代码示例、API接口规范、数据库表结构及GUI界面,具备高扩展性、安全性和易用性,适用于医疗、工业、农业等多个领域。; 适合人群:具备一定Java、Vue和深度学习基础的研发人员、AI算法工程师、计算机相关专业学生及从事智能图像分析的科研人员。; 使用场景及目标:①在样本极少的场景下实现高精度图像分类,如医疗影像、工业缺陷检测;②构建可扩展、可视化的AI训练与推理平台;③学习如何将Python深度学习模型与Java后端集成,掌握前后端分离的AI系统开发流程;④了解迁移学习、少样本学习在实际工程中的落地方法。; 阅读建议:建议结合文档中的代码示例与流程图,搭建本地开发环境进行实践,重点关注前后端交互逻辑、Python模型服务调用机制及数据库设计,同时可基于项目结构扩展联邦学习、多模态融合等高级功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值