推荐系统与大语言模型技术融合:EMNLP/NeurIPS相关论文导览

随着大语言模型在自然语言处理领域的迅速发展,大语言模型技术被广泛地应用于文本类推荐任务中。在本文中,我们筛选并总结了EMNLP 2024和NeurIPS 2024中部分大语言模型与推荐系统融合的相关论文。这些论文展示了大语言模型相关领域工作(如可解释性、预训练/微调和偏好对齐等)与推荐任务场景的对齐,从而提升文本类推荐任务的性能。

1.XRec: Large Language Models for Explainable Recommendation

论文链接:https://arxiv.org/pdf/2406.02377

推荐系统主要提供与用户偏好相匹配的个性化推荐信息,而协同过滤(CF)是当前推荐领域广泛采用的一种方法。尽管图神经网络(GNNs)和自监督学习(SSL)等先进技术使CF模型可以生成更好的用户表示,但是这些技术往往缺乏为所推荐的物品生成文本解释的能力。可解释推荐技术旨在填补这一空白,通过提供推荐决策过程的解释,增强用户对所推荐物品合理性的理解程度。本文提出了一种与模型无关的可解释推荐框架XRec,利用LLMs强大的语言能力,为推荐系统中的用户行为提供更加全面的解释。通过整合协同信号并设计轻量级的协同适配器,该框架使LLMs能够理解用户-项目交互中的复杂模式,并深入理解用户偏好。本文通过大量的实验展示了XRec的有效性,证明其生成全面且有意义的解释的能力,超越了传统的可解释推荐系统。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值