高效率种子填充算法

高效率种子填充算法

文章同时发布于:https://pengfeixc.com/blogs/minicode/react-paint-tool
最近写了一个画板小程序,为了实现画板的填充功能,研究了一下图形学填充算法。我在网上查找了大量的资料,最终找到了一个效率很高的填充算法。可以在minicode看到我的画板程序,测试下填充功能的速度。

下面我将讲述我的算法实现过程。

一. 种子填充算法(flood fill or seed fill)

网上有很多讲解种子填充算法的,大家一搜就知道有4联通的方式和8联通的方式。但是4联通和8联通的算法效率太低了,根本无法用来实现画板的填充功能。
4联通的算法,我简单描述一下:

  1. 从一个像素点出发,将其入栈。
  2. 处理栈顶的像素点,弹栈。
  3. 判断这个像素点的上、下、左、右的4个像素点是否满足填充要求,若满足将其染色,并入栈。
  4. 继续弹栈,重复2和3步骤,直至栈为空。

8联通算法与4联通算法同理。
至于它们的代码,比较简单,我就偷懒不写出来了。

二. 高效率的填充算法(efficient flood fill)

这个

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值