点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
建模用户的兴趣对于进行精准的新闻推荐至关重要。现有新闻推荐方法通常会根据用户的点击行为来推断其兴趣。但是,用户点击感兴趣的新闻标题后,可能并不满意新闻内容。因此,在许多情况下,用户会快速关闭新闻页面。面对该现象,讲者提出从两个方面对用户兴趣进行建模:基于新闻标题的点击行为和基于新闻内容的阅读行为。讲者提出了一种个性化阅读速度的指标,来衡量用户对新闻内容的满意程度。讲者提出通过用户点击新闻的标题、阅读新闻的内容以及对这些新闻的满意度,来建模用户对新闻的兴趣。此外,讲者提出使用两个监督任务对用户进行训练,即基于标题的点击预测和基于新闻内容满意度预测,从而使得模型推荐的新闻不仅更可能会被点击,还更能使用户满意。在真实数据集上的广泛实验,验证了模型的有效性。
武楚涵:清华大学电子工程系博士生,主要研究方向为自然语言处理,用户建模和推荐系统,目前已在ACL、IJCAI、KDD、AAAI、EMNLP、WSDM、NAACL和CIKM等学术会议上发表或录用论文若干。
一、背景
1、 个性化新闻推荐
随着时代的进步,人们获取新闻的渠道已经从报纸、电视发展到手机APP等在线新闻平台。然而,由于新闻平台的展示空间以及用户的时间十分有限,每天产生的数以百万计的新闻需经过筛选才能被展示。常用的新闻选择方法有两种:根据人类编辑进行选择或者根据用户兴趣进行选择。由于用户兴趣具有差异性,基于用户兴趣的个性化新闻展示往往具有更好的用户体验。在这一过程中,个性化新闻推荐技术至关重要。
一种典型的个性化新闻推荐流程如图1所示。用户访问一个新闻网站,新闻网站根据用户兴趣信息从新闻池中召回一批候选新闻,再采用个性化新闻推荐算法对召回的新闻进行排序,选择排名靠前的一部分新闻展示给用户。用户在新闻页面的行为(点击和阅读等)会被记录去更新用户的信息。循环反复后,积累的用户个性化数据越来越多,推荐往往也就越来越精准。
图1 个性化新闻推荐的流程
2、 相关工作介绍
已有的新闻推荐方法主要基于用户的点击行为进行用