基于用户点击偏好和阅读满意度的个性化新闻推荐技术

本文提出了一种结合用户点击行为和阅读满意度的个性化新闻推荐模型。通过建模用户对新闻标题的点击偏好和内容的阅读速度,以衡量用户满意度,实现了更精确的新闻推荐。模型在真实数据集上的实验表明,它能有效提升用户的点击率和阅读满意度。
摘要由CSDN通过智能技术生成

点击蓝字

关注我们

AI TIME欢迎每一位AI爱好者的加入!

建模用户的兴趣对于进行精准的新闻推荐至关重要。现有新闻推荐方法通常会根据用户的点击行为来推断其兴趣。但是,用户点击感兴趣的新闻标题后,可能并不满意新闻内容。因此,在许多情况下,用户会快速关闭新闻页面。面对该现象,讲者提出从两个方面对用户兴趣进行建模:基于新闻标题的点击行为和基于新闻内容的阅读行为。讲者提出了一种个性化阅读速度的指标,来衡量用户对新闻内容的满意程度。讲者提出通过用户点击新闻的标题、阅读新闻的内容以及对这些新闻的满意度,来建模用户对新闻的兴趣。此外,讲者提出使用两个监督任务对用户进行训练,即基于标题的点击预测和基于新闻内容满意度预测,从而使得模型推荐的新闻不仅更可能会被点击,还更能使用户满意。在真实数据集上的广泛实验,验证了模型的有效性。

武楚涵:清华大学电子工程系博士生,主要研究方向为自然语言处理,用户建模和推荐系统,目前已在ACL、IJCAI、KDD、AAAI、EMNLP、WSDM、NAACL和CIKM等学术会议上发表或录用论文若干。

一、背景

1、 个性化新闻推荐

随着时代的进步,人们获取新闻的渠道已经从报纸、电视发展到手机APP等在线新闻平台。然而,由于新闻平台的展示空间以及用户的时间十分有限,每天产生的数以百万计的新闻需经过筛选才能被展示。常用的新闻选择方法有两种:根据人类编辑进行选择或者根据用户兴趣进行选择。由于用户兴趣具有差异性,基于用户兴趣的个性化新闻展示往往具有更好的用户体验。在这一过程中,个性化新闻推荐技术至关重要。

一种典型的个性化新闻推荐流程如图1所示。用户访问一个新闻网站,新闻网站根据用户兴趣信息从新闻池中召回一批候选新闻,再采用个性化新闻推荐算法对召回的新闻进行排序,选择排名靠前的一部分新闻展示给用户。用户在新闻页面的行为(点击和阅读等)会被记录去更新用户的信息。循环反复后,积累的用户个性化数据越来越多,推荐往往也就越来越精准。

图1 个性化新闻推荐的流程

2、 相关工作介绍

已有的新闻推荐方法主要基于用户的点击行为进行用

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值