点击蓝字
关注我们
AI TIME 欢迎每一位AI爱好者的加入!
在实际应用中,数据通常以不断增长的方式出现,其中数据量和类的数量可能会动态增加。这将给学习带来一个严峻的挑战:鉴于不断增加的数据量或类的数量,必须立即调整神经模型的能力,以获得有希望的性能。现有的方法要么忽略数据的增长性质,要么寻求为给定数据集独立搜索最佳体系结构,因此无法针对变化的数据及时调整体系结构。为了解决这一问题,我们提出了一种神经结构自适应方法,即Adaptation eXpert(AdaXpert),以有效地调整增长数据上以前的结构。具体来说,我们引入了一个体系结构调整器,根据以前的体系结构以及当前和以前的数据分布之间的不同程度,为每个数据快照生成合适的体系结构。此外,我们提出了一个适应条件,以确定调整的必要性,从而避免不必要和耗时的调整。在两种增长场景(增加数据量和类数)上的大量实验证明了该方法的有效性。
本期AI TIME PhD直播间我们邀请到华南理工大学软件学院博士生——牛帅程,为我们带来报告分享《深度描述聚类》。
牛帅程:
自2018年9月开始在华南理工大学软件学院攻读博士学位。导师为谭明奎教授,以及腾讯AI Lab的吴家祥和赵沛霖研究员。主要研究方向为神经网络结构搜索和迁移学习,并在相关领域会议和期刊发表论文多篇,包括ICML, CVPR, IJCAI,TIP, TKDE等。
01
背 景
数十亿的移动电话、监控摄像头和医疗成像设备每天都在继续收集新的数据,使得数据量和类的数量随着时间动态增加,那么如何将深度神经网络(DNN)应用到这种动态变化的数据场景呢?
首先,数据的动态变化对网络模型大小地选择带来了挑战&#x