点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
3月17日晚 7:30-8:30
AI TIME 青年科学家系列特别邀请华中科技大学电信学院副研究员——廖振宇老师,给大家带来分享:《随机矩阵理论及其在大规模机器学习中的应用》
哔哩哔哩直播通道
★ 嘉宾简介 ★
廖振宇:
2014年获得华中科技大学光电信息工程学士学位,分别在2016和2019年于法国巴黎萨克雷大学获得信号与图像处理硕士和计算机博士学位。博士毕业后,在美国加州大学伯克利分校统计系从事博士后研究工作,于2021年起至今担任华中科技大学电信学院副研究员。长期从事“面向高维数据的大规模机器学习的基础理论和关键技术”的研究,开创性地将高维统计学和随机矩阵理论应用于复杂大规模机器学习系统设计,以解决其统计鲁棒性和可解释性的难题,在非监督学习、神经网络优化设计、神经网络压缩和加速等方向取得了一系列具有国际影响力的研究成果,在人工智能、机器学习顶级会议与期刊ICML、NeurIPS、ICLR、COLT、AISTATS等发表论文二十余篇,累计引用400余次,于Cambridge University Press出版专著一部,长期受邀担任人工智能、机器学习领域AISTATS、AAAI、ICLR、ICML、NeurIPS、IEEE TPAMI、JMLR、PR等顶级会议和期刊的审稿人或程序委员会委员,受邀担任欧盟自然科学基金ERC和加拿大自然科学基金NSERC外部评审。获得2021年湖北省武汉英才,2021年华中科技大学东湖青年学者,2021中国计算机学会CCF-海康威视斑头雁基金,2016年法国巴黎萨克雷大学Supelec基金会博士奖学金,2019年法国巴黎萨克雷大学ED STIC优秀博士论文。
分享内容:
随机矩阵理论及其在
大规模机器学习中的应用
报告简介:
大数据时代的来临,引发了人们对大规模机器学习和深度神经网络理论和方法的关注。然而,很多机器学习的方法是从“低维度”的日常直觉发展而来,在处理高维度、大规模的数据时,其表现往往与设计初衷大相径庭,导致算法不可信,不鲁棒,和理论最优方案相距甚远。通过考虑机器学习模型和数据集规模都很大这一实际场景,随机矩阵理论(RMT)中的最新进展为大规模机器学习问题提供了一系列全新的理论理解,使针对高维复杂数据的机器学习理论和优化成为可能,从而打开了通往全新范式的大门。在本次报告中,我们将从高维的协方差估计和 "维度诅咒 "现象的例子开始,重点聚焦在报告人近年来发表在ICML、NeurIPS和ICLR等顶级会议的相关成果,以及同剑桥大学合作出版的题为“Random Matrix Methods for Machine Learning”学术专著,强调在大数据场景下出现的诸多反直觉现象,并借助随机矩阵理论为这些高维空间的反直觉现象提供新的定量理解,进一步地针对许多实际问题做出精确的理论预测今和算法优化。
直播结束后大家可以在群内进行提问,请添加“AI TIME小助手(微信号:AITIME_HY)”,回复“PhD-3”,将拉您进“AI TIME PhD 交流群-3”!
AI TIME微信小助手
主 办:AI TIME
合作媒体:AI 数据派
合作伙伴:智谱·AI、中国工程院知领直播、学堂在线、蔻享学术、AMiner、 Ever链动
往期精彩文章推荐
记得关注我们呀!每天都有新知识!
关于AI TIME
2019年,清华大学人工智能研究院院长张钹院士、唐杰教授和李涓子教授等人联合发起“AI TIME science debate”,希望用辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
AI TIME是清华大学计算机系一群关注人工智能发展,并有思想情怀的青年学者创办的圈子。AI TIME旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法、场景、应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家与爱好者,打造成为全球AI交流与知识分享的聚集地。
我知道你
在看
哦
~
点击 阅读原文 预约直播!