点击蓝字
关注我们
AI TIME 欢迎每一位AI爱好者的加入!
6月8日、9日19:30,本期我们特别邀请到中国科学院计算技术研究所高林老师的团队的同学们给大家带来精彩的分享,带我们一起走进“图形”的世界!
哔哩哔哩直播通道
扫码关注AI TIME哔哩哔哩官方账号预约直播
6月8日 19:30-21:00
杨洁:
中国科学院计算技术研究所博士研究生,指导教师为高林老师和夏时洪老师。研究方向为几何处理和几何学习,本科毕业于四川大学数学系,获得理学学士学位。系列研究成果发表在ACM SIGGRAPH\TOG、IEEE TPAMI、IEEE TVCG、NeurIPS和ICCV上。曾获得国家奖学金,时谛智能CAD&CG优秀学生奖,第四范式博士生奖等。
分享内容:
面向复杂几何结构和精细几何细节
的递归深度生成模型
报告简介:
3D几何形状表示和建模是计算机图形学和计算机视觉的核心任务之一,从场景理解、物体识别与分类等上层应用到形状重建和编辑等底层任务的算法设计都依赖于良好的三维几何表示和高质量的模型。理想情况下,合成的形状应该能够包含精细的几何细节和复杂的结构,并且生成过程需要提供高级控制以确保生成我们所需的模型。现有的用于深度几何学习的表示方法难以同时满足以上的要求,同时无法进行可控制的模型合成。本工作得益于分层次递归图表示以及同胚变形细节表达能力强的优势。依据三维模型内在的多层递归结构设计提出了相应的深度生成模型,引入了结构化的建模方法来对一般的三维人造模型进行表示建模。同时,还可以对三维模型的几何细节和结构进行解耦编码,并且可以合理的利用数据的分布进行可控制的模型插值和生成。进一步的,我们将分层递归图的结构运用在表达复杂场景的布局和细节上,同时引入功能区域的概念以及Hyper edges关系来简化场景的复杂布局,最后可以达到合理的场景布局生成,包括物体的精细的部件细节的生成和重建。相关工作分别发表在图形学顶级期刊ACM SIGGRAPH\TOG以及人工智能顶刊IEEE TPAMI上。
刘锋林:
中国科学院计算技术研究所2021级硕士研究生,导师为李淳芃副研究员和高林副研究员,研究方向为计算机图形学,相关研究工作发表SIGGRAPH上。
分享内容:
基于草图的人脸图像和视频编辑
报告简介:
现有的人脸图像和视频编辑方法,需要使用复杂的软件及专业的技能,编辑成本较高。针对上述问题,我们开发了基于草图的图像编辑系统DeepFaceEditing和视频编辑系统DeepFaceVideoEditing,两项工作分别发表于图形学顶会SIGGRAPH2021和SIGGRAPH2022,并收录于TOG期刊长文。DeepFaceEditing提出了针对人脸的结构化的解耦框架,使用局部到全局的分块策略,解耦人脸的几何和外观。该系统既可以使用草图修改人脸的几何信息,编辑五官形状和头发结构等,也可以基于参考图像修改人脸的外观信息,改变人脸的肤色和发色等。进一步,我们提出了第一个基于草图的人脸视频编辑系统DeepFaceVideoEditing,使用StyleGAN生成网络,将人脸视频投影至隐空间。用户的草图编辑操作被抽象表示为编辑向量,使用时序无关和时序相关两种方式传播。同时,该系统使用区域融合策略,支持用户在任意一帧/多帧输入不同的编辑操作。
袁宇杰:
中国科学院计算技术研究所博士研究生,指导教师为高林副研究员。研究方向为计算机图形学和三维计算机视觉,本科毕业于西安交通大学,获得理学学士学位。研究成果发表在ACM SIGGRAPH\TOG、CVPR上。
分享内容:
神经辐射场的几何和外观编辑方法
报告简介:
近年来,神经渲染技术迅速发展。神经辐射场作为其中一个广受关注的工作,在新视角合成任务上取得了优异的表现。然而神经辐射场作为一种隐式表征,难以在用户控制下对其几何和外观进行编辑。本次报告将围绕神经辐射场的编辑方法,分别介绍一种神经辐射场的几何编辑方法和外观编辑方法。我们首先出了一种交互式神经辐射场几何变形方法,在显式三角网格表示和隐式表示之间建立联系,利用显式三角网格的变形方法,实现用户控制下对隐式编码的几何进行变形编辑,编辑后的结果支持自由视点浏览。针对外观编辑,我们提出了一种基于神经辐射场的3D场景风格化方法,利用了2D-3D的互学习方法,让神经辐射场网络和2D的卷积解码网络相互利用对方的优势,达到了兼具一致性和高质量风格化的效果。两项研究工作发表于CVPR 2022上。
6月9日 19:30-20:30
吴桐:
中国科学院计算技术研究所的博士研究生,其研究方向为计算机图形学和三维计算机视觉,相关研究工作发表在SIGGRAPH上。
分享内容:
一种纹理三维模型生成网络TM-NET
报告简介:
近些年来,生成网络已经在图像和三维模型领域取得了巨大的成功,然而现有的点云、体素、隐式场和网格的工作生成纹理三维模型的效果并不理想,无法表达高频的纹理细节。本报告将介绍一种基于结构化包围盒展开的高质量纹理三维模型生成方法,将包围盒的展开作为统一的纹理映射定义域,通过量化编码器编码纹理的高频细节,利用条件自回归模型建立几何和纹理的关系,实现了高质量的纹理三维模型的生成。
孙阳天:
中国科学院计算技术研究所的硕士研究生,导师为高林副研究员。其研究方向为计算机图形学和三维计算机视觉,相关研究工作发表在IEEE TPAMI和CVPR上。
分享内容:
基于动态纹理表达的人体视频渲染
报告简介:
数字人的生成近年来受到了广泛的关注。然而,基于图像翻译技术的方法往往需要大量的人体视频进行训练,泛化能力较为有限;基于渲染的工作又无法较好地表达人体表面的动态细节。本报告介绍一种人体渲染过程中动态高频细节的合成方法,通过将图形翻译技术嵌入可微渲染框架,实现了高真实感的人体动态细节合成。
直播结束后大家可以在群内进行提问,请添加“AI TIME小助手(微信号:AITIME_HY)”,回复“图形”,将拉您进“AI TIME 计算机视觉交流群”!
AI TIME微信小助手
主 办:AI TIME
合作媒体:AI 数据派、学术头条
合作伙伴:智谱·AI、中国工程院知领直播、学堂在线、蔻享学术、AMiner、 Ever链动、科研云
往期精彩文章推荐
记得关注我们呀!每天都有新知识!
关于AI TIME
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
迄今为止,AI TIME已经邀请了600多位海内外讲者,举办了逾300场活动,超170万人次观看。
我知道你
在看
哦
~
点击 阅读原文 预约直播!