【NeurIPS 2023】DreamRec:生成式推荐新范式

中国科大和香港理大的研究团队提出了DreamRec,一种基于生成式框架的推荐系统,它将推荐任务重新定义为生成用户理想物品的过程,无需负采样,展示了生成式推荐的巨大潜力。论文发表在NeurIPS2023,通过条件扩散模型和Classifier-freeGuidance策略,DreamRec在实验中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击蓝字

11b96278ee6b9b00f290f6c74da9d323.jpeg

关注我们

AI TIME欢迎每一位AI爱好者的加入!

以下文章来自 专知 杨正一:

长久以来,推荐任务被视为判别式任务(Learning to Classify):给定用户的交互历史,基于判别式的传统推荐模型通过优化正样本(观察到的用户交互)和负样本(通常通过负采样得到)的判别边界,来实现推荐模型的训练。

然而,基于判别式的传统推荐系统存在天然的弊端:负样本在实际推荐场景中难以观测,大多通过人为的负采样策略来得到,难以保证负样本的真实性。此外,基于判别式的推荐系统只能在已知的候选物品集内进行判别,对用户的兴趣造成了极大的局限。以上弊端,在基于判别式的传统推荐框架下是难以逾越的。

近日,来自中国科学技术大学,以及香港理工大学的研究团队,打破了传统推荐系统拘于判别式框架的桎梏,利用条件扩散模型(Guided Diffusion),在生成式框架下(Learning to Generate)重塑序列化推荐,提出DreamRec推荐框架,将推荐任务定义为用户理想物品(Oracel Item)的生成任务,向我们展示了生成式推荐系统的巨大潜力。

该论文发表于NeurIPS 2023:

论文地址:

https://arxiv.org/pdf/2310.20453.pdf

项目主页:

https://github.com/YangZhengyi98/DreamRec

研究动机

序列推荐一直以来被认为是判别式任务:在训练过程中,给定用户历史交互序列,和用户接下来要交互的物品(正样本),推荐模型首先进行负采样得到负样本,然后通过优化正负样本的判别边界来进行训练。总之,基于判别式的推荐模型基本目的是判断候选集中的物品是正样本还是负样本。

085e0a03f635534341d36127cf5063b4.png

尽管判别式推荐模型已经统治推荐系统很多年,其中有两个问题难以解决:

(1)过于简化用户行为 —— 用户在与推荐系统交互后,会在脑海中自然形成理想物品(Oracle Item),然后在推荐列表中挑选和理想物品最匹配的进行交互。此理想物品是用户在交互后自然形成的,准确反映了用户兴趣,很难存在于候选物品集中。

(2)基于判别式的推荐模型只能用于区分观测到的正样本与采样得到的负样本,无法对理想物品进行准确建模。

为解决上述问题,我们必须建模理想物品的生成过程,这是判别式框架无法做到的。因此,我们提出DreamRec,将推荐任务重塑为理想物品的生成任务,并利用条件扩散模型,直接建模理想物品生成过程。

DreamRec刻画已观测交互数据的潜在生成分布,完全摆脱负样本,这是传统推荐模型难以做到的。此外,DreamRec完全基于生成式框架,不再局限于已知候选物品集。

DreamRec方法

给定用户历史交互的物品序列,通常每个物品都会转化为对应的向量表示:

db92508acf55d91fcd8d43296ef6c5e0.png

在DreamRec中,将理想物品的生成分布建模为:

38c9d90fa04a582c59376262f9a4dc5a.png

注意此分布并非给定交互序列后,预测对候选集种物品推荐的概率分布,这是基于判别式推荐系统的常见建模方式。此分布描绘了给定交互序列后,生成理想物品需要服从的分布。如果此分布可以准确建模,那么我们将可以从中直接采样出理想物品。在DreamRec中,此分布通过条件扩散模型进行学习。

4f27d1a9c5af2d46b6a26350bb9e6be9.png

DreamRec训练过程

首先将历史交互序列通过Transformer encoder进行编码:

87cf5b7a9f5ceca9956f0f4c2810276c.png

在DreamRec中,去噪过程(逆向过程)可以建模为:

8bcf8b2ebdb5e4e918e629a863d5db04.png

前向加噪过程是基于高斯核的马尔可夫过程:

4295e00b52ff4fb0c6d4f9a54d606f08.png

Dream的优化函数是学习去噪过程,通过前向与逆向过程的匹配实现:

696334fa81c47d28eba1e61a79598a33.png

利用重参数化技巧:

8793edc3063753e53dd0cb7c148b48c8.png

优化函数将转化为:

ef9335fe9075a67ba116de4fab271760.png

从优化函数中可以看出,DreamRec的训练过程关注在从噪声样本中恢复真实样本,完全不需要负样本参与,这是判别式推荐系统无法做到的。

在DreamRec训练过程中,我们采用Classifier-free Guidance策略,实现条件扩散模型与非条件扩散模型的同时训练。,从而实现条件扩散模型与非条件扩散模型的同时训练(Classifier-free Guidance)。

DreamRec采样过程

为了调节条件信号的强度,DreamRec在采样过程中会进行如下改动:

53d6806b49b0e4c819da56288e7adea0.png

采样过程的一步去噪过程可以表示为:

f980848db3392cc27ffe49a26508964d.png

为了生成理想物品,我们首先采样一个高斯噪声, 然后通过以上公式进行步去噪,即可生成理想物品。

实验结果

我们在三个真实数据集下,与代表性的序列推荐方法进行对比,展示了DreamRec优秀的推荐性能。值得注意的是,DreamRec作为生成式推荐模型,完全不依赖负采样,而其余序列推荐模型均为判别式,对负采样具有极强的依赖。

9f4a209ade82a4254f98d0ed06558473.png

下面是用T-SNE对不同模型的物品向量表示进行降维可视化的结果。可以看出SASRec如果不进行负采样,学到的物品将难以区分;SASRec进行负采样后,可以更好的区分不同物品,但在中心区域仍有难以区分的物品。而DreamRec在不依赖负采样的情况下,对物品空间进行了更加全面的探索。

decfaacc1cab4753fa50a3586a5800f0.png

总结与展望

DreamRec利用条件扩散模型,首次提出将序列推荐任务重塑为理想物品的生成任务,打破了长久以来将推荐视为判别式的范式,完全抛弃负采样,这是传统推荐模型难以做到的。

但值得一提的是,DreamRec生成的是理想物品的隐向量表示,并未将理想物品显式表示出来。基于此我们提出RecInterpreter,成功通过大语言模型获得了理想物品的自然语言描述,全方位实现了DreamRec的生成式推荐新范式。

参考内容:https://arxiv.org/pdf/2310.20453.pdf

点击“阅读原文”跳转至1:39:35

可以查看回放哦!

往期精彩文章推荐

184ac4c91344c6ec0f72923701cabf3f.jpeg

关注我们 记得星标

 关于AI TIME 

AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。

迄今为止,AI TIME已经邀请了1400多位海内外讲者,举办了逾600场活动,超600万人次观看。

d20c49ff5520a2fc194ef378c582947a.png

我知道你

在看

~

5abdff294b4a3f79813bd4d37612dc8e.gif

点击 阅读原文 跳转至“1:39:35”查看回放!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值